Respuesta :
Answer:
- The x-component of the velocity of the third particle is [tex]- 1.50 \ 10 ^{7} \frac{m}{s}[/tex]
- The y-component of the velocity of the third particle is [tex]- 1.34 \ 10 ^{-20} \frac{\ m}{s}[/tex]
- The increase in kinetic energy is [tex]E= 6.1586 \ 10 ^ {-13} Joules [/tex]
Explanation:
We can take conservation of linear momentum to find the velocities:
The initial momentum of the nucleus will be:
[tex]\vec{P}_0=0[/tex]
as is at rest.
After the decay, the first particle has a momentum
[tex]\vec{P}_1 = m_1 \ \vec{V}_1 = 5.04 \ 10^{-27} kg \ * ( 0 \ , \ 6.00 \ 10 ^{6} \frac{m}{s})[/tex]
[tex]\vec{P}_1 = ( 0 \ , \ 3.024 \ 10 ^{-20} \frac{kg \ m}{s})[/tex]
the second one has a momentum
[tex]\vec{P}_2 = m_2 \ \vec{V}_2 = 8.50 \ 10^{-27} kg \ * ( 4.00 \ 10 ^{6} \frac{m}{s} \ , \ 0)[/tex]
[tex]\vec{P}_2 = ( 3.4 \ 10 ^{-20} \frac{kg \ m}{s} \ , \ 0)[/tex]
By conservation of linear momentum we have:
[tex]\vec{P}_0= \vec{P}_1 + \vec{P}_2 + \vec{P}_3[/tex]
[tex]\vec{P}_3= -\vec{P}_1 - \vec{P}_2 [/tex]
[tex]\vec{P}_3= ( - 3.4 \ 10 ^{-20} \frac{kg \ m}{s} \ , \ - 3.024 \ 10 ^{-20} \frac{kg \ m}{s}) [/tex]
for the third particle, we know that mass is conserved:
[tex]m_0 = m_1 + m_2 + m_3[/tex]
[tex]m_3 = m_0 - m_1 - m_2[/tex]
[tex]m_3 = 1.58 \ 10^{-26} kg - 5.04 \ 10^{-27} kg - 8.50 \ 10^{-27} kg[/tex]
[tex]m_3 = 2.26 \ 10^{-27} kg[/tex]
The velocity will be:
[tex]\vec{v}_3 = \frac{1}{m_3} \vec{P}_3[/tex]
[tex]\vec{v}_3 = \frac{1}{ 2.26 \ 10^{-27} kg} ( - 3.4 \ 10 ^{-20} \frac{kg \ m}{s} \ , \ - 3.024 \ 10 ^{-20} \frac{kg \ m}{s}) [/tex]
[tex]\vec{v}_3 = ( - 1.50 \ 10 ^{7} \frac{m}{s} \ , \ - 1.34 \ 10 ^{-7} \frac{\ m}{s}) [/tex]
The kinetic energy is given by
[tex]E= \frac{1}{2} m_1 v_1^2 + m_2 v_2^2 + m_3 v_3^2[/tex]
[tex]E= \frac{1}{2} 5.04 \ 10^{-27} kg \ (6.00 \ 10 ^{6} \frac{m}{s}) ^2 \\ \\ + \frac{1}{2} 8.50 \ 10^{-27} kg \ (4.00 \ 10 ^{6} \frac{m}{s}) ^2 \\ \\ + \frac{1}{2} 2.26 \ 10^{-27} kg \ ((- 1.50 \ 10 ^{7} \frac{m}{s}) ^2+(- 1.34 \ 10 ^{-7} \frac{\ m}{s})^2)[/tex]
[tex]E= 9.072 \ 10 ^ {-14} Joules + 6.8 \ 10 ^ {-14} Joules + 2.5425 \ 10^{-13} Joules + 2.029 \ 10^{-13} Joules[/tex]
[tex]E= 6.1586 \ 10 ^ {-13} Joules [/tex]
And, as the initial kinetic energy is zero, this must be the increase in energy.
Answer:
(a) - 4.9 x 10^6 m/s
(b) - 4.38 x 10^6 m/s
(c) 17.36 x 10^-14 J
Explanation:
M = 1.58 x 10^-26 kg
U = 0
m1 = 5.04 x 10^-27 kg
v1 = 6 x 10^6 m/s along Y axis
m2 = 8.5 x 10^-27 kg
v2 = 4 x 10^6 m/s along X axis
Let m3 be the mass of third particle which is moving with velocity v having X axis component is vx and y axis component is vy.
So, m3 = M - m1 - m2 = 1.58 x 10^-26 - 5.04 x 10^-27 - 8.5 x 10^-27
m3 = 6.9 x 10^-27 kg
(a) Use the conservation of momentum along X axis
M x U = m1 x 0 + m2 x v2 + m3 x vx
0 = 0 + 8.5 x 10^-27 x 4 x 10^6 + 6.9 x 10^-27 x vx
vx = - 4.9 x 10^6 m/s
(b) Use the conservation of momentum along Y axis
M x U = m1 x v1 + m2 x 0 + m3 x vy
0 = 5.04 x 10^-27 x 6 x 10^6 + 0 + 6.9 x 10^-27 x vy
vy = - 4.38 x 10^6 m/s
(c) The resultant velocity of third mass, [tex]v_{3}=\sqrt{v_{x}^{2}+v_{y}^{2}}[/tex]
[tex]v_{3}=\sqrt{4.9}^{2}+4.38^{2}}\times 10^{6}=6.57 \times 10^{6}m/s[/tex]
The formula for the kinetic energy is [tex]\frac{1}{2}mv^{2}[/tex]
Total kinetic energy = [tex]\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}+\frac{1}{2}m_{3}v_{3}^{2}[/tex]
[tex]K = \frac{1}{2}\times 5.04\times 10^{-27}\times \left ( 6 \times 10^{6} \right )^{2}+\frac{1}{2}\times 8.5\times 10^{-27}\times \left ( 4 \times 10^{6} \right )^{2}+\frac{1}{2}\times 6.9\times 10^{-27}\times \left ( 6.57 \times 10^{6} \right )^{2}[/tex]
K = 17.36 x 10^-14 J