Simplify the expression. Write your answer as a complex number. 2 times the square root of 25 plus the square root of negative 16 10 + 4i 10 − 4i 10 + 8i 10 − 8i

Respuesta :

znk

Answer:

10 + 4i  

Step-by-step explanation:

[tex]\begin{array}{rcl}2\sqrt{25} + \sqrt{-16} & = & 2 \times 5 + \sqrt{(-1)(16)}\\& = & \mathbf{10 + 4i}\\\end{array}[/tex]

Answer:

A. [tex]10+4i[/tex]

Step-by-step explanation:

We are asked to simplify the given expression [tex]2\times \sqrt{25}+\sqrt{-16}[/tex].

We will use imaginary unit 'i' to solve our given problem.

Write 25 as square of 5:

[tex]2\times \sqrt{5^2}+\sqrt{-16}[/tex]

[tex]2\times 5+\sqrt{-16}[/tex]

[tex]10+\sqrt{-16}[/tex]

[tex]10+\sqrt{-1\times 16}[/tex]

Substitute [tex]i^2=-1[/tex] in the expression:

[tex]10+\sqrt{i^2\times 16}[/tex]

Write 16 as square of 4:

[tex]10+\sqrt{i^2\times 4^2}[/tex]

[tex]10+4i[/tex]

Therefore, the simplified form of our given expression would be [tex]10+4i[/tex].

ACCESS MORE