Respuesta :
Answer:
10 + 4i
Step-by-step explanation:
[tex]\begin{array}{rcl}2\sqrt{25} + \sqrt{-16} & = & 2 \times 5 + \sqrt{(-1)(16)}\\& = & \mathbf{10 + 4i}\\\end{array}[/tex]
Answer:
A. [tex]10+4i[/tex]
Step-by-step explanation:
We are asked to simplify the given expression [tex]2\times \sqrt{25}+\sqrt{-16}[/tex].
We will use imaginary unit 'i' to solve our given problem.
Write 25 as square of 5:
[tex]2\times \sqrt{5^2}+\sqrt{-16}[/tex]
[tex]2\times 5+\sqrt{-16}[/tex]
[tex]10+\sqrt{-16}[/tex]
[tex]10+\sqrt{-1\times 16}[/tex]
Substitute [tex]i^2=-1[/tex] in the expression:
[tex]10+\sqrt{i^2\times 16}[/tex]
Write 16 as square of 4:
[tex]10+\sqrt{i^2\times 4^2}[/tex]
[tex]10+4i[/tex]
Therefore, the simplified form of our given expression would be [tex]10+4i[/tex].