Answer:
[tex]H_{max} = 6.19 m[/tex]
Explanation:
When rock is moving up along the inclined plane then the deceleration of the rock is given as
[tex]a = -\frac{(\mu mg cos\theta + mgsin\theta)}{m}[/tex]
[tex]a = -(\mu g cos\theta + g sin\theta)[/tex]
now we have
[tex]a = -(0.355(9.81)cos32 + 9.81 sin32)[/tex]
[tex]a = -8.15 m/s^2[/tex]
so final speed at the top of the ramp is given as
[tex]v_f^2 - v_i^2 = 2ad[/tex]
[tex]v_f^2 - 15^2 = 2(-8.15)(10)[/tex]
[tex]v_f = 7.87 m/s[/tex]
now at this point the vertical component of the velocity is given as
[tex]v_y = v_fsin32[/tex]
[tex]v_y = 7.87 sin32[/tex]
[tex]v_y = 4.17 m/s[/tex]
Now maximum height from the ground is given as
[tex]H_{max} = 10sin32 + \frac{v_y^2}{2g}[/tex]
[tex]H_{max} = 10sin32 + \frac{4.17^2}{2(9.81)}[/tex]
[tex]H_{max} = 6.19 m[/tex]