Respuesta :
Answer:
(a): [tex]\rm 3.560\times 10^{10}\ electrons[/tex]
(b): [tex]\rm 6.675\times 10^{10}\ electrons[/tex]
Explanation:
Given:
- Length of the rod, L = 3.06 m.
- Cross-sectional area of the rod, A = 4.32 cm² = [tex]\rm 4.32\times 10^{-4}\ m^2.[/tex].
The charge on a single electron, [tex]\rm e=-1.9\times 10^{-19}\ C.[/tex]
The excess number of electrons on the rod is equal to the net charge on the rod divided by the charge on a single electron.
(a): If the volume charge density of the rod is uniform.
Uniform volume charge density of the rod, [tex]\rm \rho = -4.31\ muC/m^3= -4.31\times 10^{-6}\ C/m^3.[/tex]
For the uniform charge density, the total charge on the rod is equal to the product of volume of the rod and the volume charge density of the rod.
[tex]\rm Q=\rho \times Volume\ of\ the\ rod\\=\rho\times (A\times L)\\=-4.31\times 10^{-6}\times (4.32\times 10^{-4}\times 3.06)\\=-5.697\times 10^{-9}\ C.[/tex]
If there are n number of excess electron on the rod, then,
[tex]\rm Q=ne\\n=\dfrac Qe =\dfrac{-5.697\times 10^{-9}}{-1.6\times 10^{-19}}=3.56\times 10^{10}\ electrons.[/tex]
(b): If the volume charge density of the rod is non-uniform.
Non-uniform volume charge density of the rod, [tex]\rm \rho(x) = bx^2.[/tex]
where, [tex]\rm b=-2.59\ muC/m^5= -2.59\times 10^{-6}\ C/m^5.[/tex]
For the non-uniform charge density of the rod, the total charge on the rod is given by
[tex]\rm Q=\int \rho(x)\ dV.[/tex]
where, dV is the volume element of the rod whose length is dx, therefore, dV = A dx.
The rod is extended from origin to length L, therefore, the total charge on the rod is given by,
[tex]\rm Q = \int\limits^{L}_{0} \rho(x)A\ dx\\= \int\limits^{L}_{0} bx^2A\ dx\\= bA\int\limits^{L}_{0} x^2\ dx\\=bA\left (\dfrac{x^3}3 \right )\limits^{L}_{0}\\=bA\dfrac{L^3}{3}\\=\dfrac 13 \times (-2.59\times 10^{-6})\times(4.32\times 10^{-4})\times(3.06^3) \\=-1.068\times 10^{-8}\ C.[/tex]
If there are n number of excess electron on the rod, then,
[tex]\rm Q=ne\\n=\dfrac Qe =\dfrac{-1.068\times 10^{-8}}{-1.6\times 10^{-19}}=6.675\times 10^{10}\ electrons.[/tex]