Respuesta :
Answer:
a)[tex]t_{1}=3.49s[/tex]
b)[tex]t_{2}=2.00s[/tex]
c)Xmax=80.71m
Explanation:
a)Kinematics equation for the Stone, dropped:
[tex]v(t)=v_{o}-g*t[/tex]
[tex]y(t)=y_{o}+v_{o}t-1/2*g*t^{2}[/tex]
[tex]y_{o}=h=60m[/tex] initial position is bridge height
[tex]v_{o}=0m/s[/tex] the stone is dropped
The ball reaches the ground, y=0, at t=t1:
[tex]0=h-1/2*g*t_{1}^{2}[/tex]
[tex]t_{1}=\sqrt{2h/g}=\sqrt{2*60/9.83}=3.49s[/tex]
b)Kinematics equation for the Stone, with a initial speed of 20m/s:
[tex]v(t)=v_{o}-g*t[/tex]
[tex]y(t)=y_{o}+v_{o}t-1/2*g*t^{2}[/tex]
[tex]y_{o}=h=60m[/tex] initial position is bridge height
[tex]v_{o}=-20m/s[/tex] the stone is thrown straight down
The ball reaches the ground, y=0, at t=t1:
[tex]0=h+v_{o}t_{2}-1/2*g*t_{2}^{2}[/tex]
[tex]0=60-20t_{2}-1/2*9.83*t_{2}^{2}[/tex]
t2=-6.01 this solution does not have physical sense
t2=2.00
c)Kinematics equation for the Stone, with a initial speed of 20m/s with an angle of 30° above the horizontal:
[tex]v(t)=v_{o}-g*t[/tex]
[tex]y(t)=y_{o}+v_{o}t-1/2*g*t^{2}[/tex]
[tex]y_{o}=h=60m[/tex] initial position is bridge height
[tex]v_{o}=20sin(30)=10m/s[/tex] the stone is thrown with an angle of 30° above the horizontal
The ball reaches the ground, y=0, at t=t3:
[tex]0=h+v_{o}t_{3}-1/2*g*t_{3}^{2}[/tex]
[tex]0=60+10t_{3}-1/2*9.83*t_{3}^{2}[/tex]
t3=-2.62 this solution does not have physical sense
t3=4.66
the movement in x:
v=constant=20cos(30)m/s
x(t)=v*t
Xmax=v*t3=20cos(30)*4.66=80.71m