Answer:
[tex]M(T)=1.1(7(8+T^{10})^{3})[/tex] and [tex]M(T)=1.1(7(8+22^{10})^{3})=1.44\time10^{41}[/tex]
Step-by-step explanation:
We have the next set of functions:
[tex]L(T)=8+T^{10}[/tex]
[tex]V(L)=7L^{3}[/tex]
[tex]M(V)=1.1V[/tex]
We want to know M(T) then:
[tex]M(V)=1.1V[/tex] but we know that [tex]V(L)=7L^{3}[/tex]:
[tex]M(L)=1.1(7L^{3})[/tex] and we know that [tex]L(T)=8+T^{10}[/tex]
[tex]M(T)=1.1(7(8+T^{10})^{3})[/tex]
Finally using the value of 22º we have
[tex]M(T)=1.1(7(8+22^{10})^{3})=1.44\time10^{41}[/tex]