Respuesta :
The value of the expression [tex]\left (\dfrac{8\times 4 \times 2}{8\times 7} \right )^2 \times \left (\dfrac{8^0}{7^{-3}} \right )^{-3} \times 7^{-9}[/tex] is equivalent to 64/49.
What is the exponent?
Exponent is defined as the method of expressing large numbers in terms of powers.
The given expression is;
[tex]\left (\dfrac{8\times 4 \times 2}{8\times 7} \right )^2 \times \left (\dfrac{8^0}{7^{-3}} \right )^{-3} \times 7^{-9}[/tex]
The expression is equivalent to the given expression and is determined in the following steps given below.
[tex]=\left (\dfrac{8\times 4 \times 2}{8\times 7} \right )^2 \times \left (\dfrac{8^0}{7^{-3}} \right )^{-3} \times 7^{-9}\\\\= \dfrac{8^2}{7^2} \times \dfrac{1}{7^{-9}} \times 7^{-9}\\\\= \dfrac{8^2}{7^2}\\\\=\dfrac{64}{49}\\\\[/tex]
Hence, the value of the expression [tex]\left (\dfrac{8\times 4 \times 2}{8\times 7} \right )^2 \times \left (\dfrac{8^0}{7^{-3}} \right )^{-3} \times 7^{-9}[/tex] is equivalent to 64/49.
Learn more about exponents here;
https://brainly.com/question/11789078
#SPJ2