Answer:
Explanation:
Given
Initial velocity (u)=0
t=15.4 s
acceleration(a)=[tex]2.25 m/s^2[/tex]
(a)maximum height the rocket will reach is s
v=u+at
[tex]v=0+2.25\times 15.4=34.65m/s[/tex]
[tex]v^2-u^2=2gs[/tex]
[tex]0-34.65^2=-2\times 9.81\times s[/tex]
s=61.19 m
(b) velocity of rocket before it crashes on to launchpad
[tex]v^2-u^2=2as[/tex]
Now rocket will be under complete control of gravity
here u=0 as rocket has reach its maximum height
up to 15.4 s rocket has covered a distance of 266.805
[tex]v^2=2\times 9.81\times (61.19+266.805)[/tex]
[tex]v=\sqrt{6435.261}=80.22 m/s[/tex]
(c)Time taken will be addition of rocket reaching maximum height plus rocket reaching launchpad
[tex]t_1=\frac{34.65}{9.81}=3.53 s[/tex]
Now from maximum height to launchpad
[tex]v=u+at_2[/tex]
[tex]80.22=0+9.81\times t_2[/tex]
[tex]t_2=8.177 s[/tex]
t=3.53+8.177=11.71 s