Respuesta :
Answer:
The total vertical displacement is [tex]\vec{D}_{diver} = - 28.0 \ m \ \hat{j} [/tex]
Explanation:
Lets say the position of the boat its at the origin of the coordinate system, this is, in vector form:
[tex]\vec{r}_{boat}=0 * \hat{j}[/tex]
This simplifies our problem, as the vertical displacement of the diver its:
[tex]\vec{D}=\vec{r}_{diver}-\vec{r}_{boat}[/tex]
Now, in this coordinate system, this is the same as:
[tex]\vec{D}=\vec{r}_{diver}[/tex]
Be careful. This is only valid in this particular coordinate system.
Ok, we can return to our problem.
Starting at position
[tex]\vec{r}_{diver} = 0 \ \hat{j}[/tex]
He first descends 8.0 m, this is :
[tex]\vec{r}_{diver} = 0 \ \hat{j} - 8.0 \ m \ \hat{j}[/tex],
as the unit vector ĵ points upwards. Making the substaction:
[tex]\vec{r}_{diver} = - 8.0 \ m \ \hat{j}[/tex],
After this, the diver ascends 5.0 m:
[tex]\vec{r}_{diver} = - 8.0 \ m \ \hat{j} + 5.0 \ m \ \hat{j} [/tex],
[tex]\vec{r}_{diver} = - 3.0 \ m \ \hat{j}[/tex]
Then, he continues descending for another 12.0 m:
[tex]\vec{r}_{diver} = - 3.0 \ m \ \hat{j} - 12.0 \ m \ \hat{j}[/tex]
[tex]\vec{r}_{diver} = - 15.0 \ m \ \hat{j}[/tex]
The, ascends 4.0 m and then descends for 14.0 m, ascends again for 8.0 m and descends again for 11.0 m, all this, will be :
[tex]\vec{r}_{diver} = - 15.0 \ m \ \hat{j} + 4.0 \ m \ \hat{j} - 14.0 \ m \ \hat{j} + 8.0 \ m \ \hat{j} - 11.0 \ m \ \hat{j}[/tex]
[tex]\vec{r}_{diver} = - 28.0 \ m \ \hat{j} [/tex]
And this is the total vertical displacement.