Respuesta :
Answer:
a) V=38.51knots
b) 88.5 degrees north of east
or 1.5 degrees east of north.
c) 4.15 hours
d) 88.5 degrees South of west
or 1.5 degrees West of South.
Explanation:
Fisrt of all, we need to find the X and Y components of the velocity of each ship.
for ship A:
[tex]V_{ax} =V*cos(\alpha)\\V_{ax} =-24*cos(45)\\V_{ax} =-17 knots[/tex]
[tex]V_{ay} =V*sin(\alpha)\\V_{ay =24*sin(45)\\ V_{ay} =17 knots[/tex]
Now for B:
[tex]V_{bx} =V*sin(\alpha)\\V_{bx} =-28*sin(40)\\V_{ax} =-18 knots[/tex]
[tex]V_{by} =V*cos(\alpha)\\V_{bx} =-28*cos(40)\\V_{ay} =-21.5 knots[/tex]
the relative velocity is given by:
[tex]V_{ab} =V_{a} -V_{b}[/tex]
For the X axis:
[tex]V_{abx} =(-17)-(-18)\\V_{abx} =1knot[/tex]
For the Y axis:
[tex]V_{abx} =(17)-(-21.5)\\V_{abx} =38.5knot[/tex]
And the magnitud is given by:
[tex]V=\sqrt{V_{abx}^2+V_{aby}^2} \\V=\sqrt{1^2+38.5^2} \\V=38.51knots[/tex]
We can calulate the angle using :
[tex]\alpha=arctang(\frac{V_{aby}}{V_{abx}})\\\alpha=88.5^o[/tex]
that is 88.5 degrees north of east
or 1.5 degrees east of north.
In order to know the time the ships will be 160 nautical miles apart is given by:
[tex]t=\frac{distance}{velocity}\\t=\frac{160}{38.51}=4.15h[/tex]
Because the velocity of A relative to B will be the opposite, so will be its direction.
So the angle will be:
88.5 degrees South of west
1.5 degrees West of South.