Answer:
819.78 m
Explanation:
Given:
A diagram has been attached with the solution in order to clearly show the position of the plane.
[tex]\vec{OA} = OA\cos \theta \hat{i}+OA \sin \theta \hat{j}\\\Rightarrow \vec{OA} = 375\ m\cos 43^\circ \hat{i}+375\ m\sin 43^\circ \hat{j}\\\Rightarrow \vec{OA} = (274.26\ \hat{i}+255.75\ \hat{j})\ m\\\vec{OB} = OB\cos \alpha \hat{i}+OB \sin \alpha \hat{j}\\\Rightarrow \vec{OB} = 797\ m\cos 123^\circ \hat{i}+797\ m\sin 123^\circ \hat{j}\\\Rightarrow \vec{OB} = (-434.08\ \hat{i}+668.42\ \hat{j})\ m[/tex]
Displacement vector of the airplane will be the shortest line joining the initial position of the airplane to the final position of the airplane which is given by:
[tex]\vec{AB}=\vec{OB}-\vec{OA}\\\Rightarrow \vec{AB} = (-434.08\ \hat{i}+668.42\ \hat{j})\ m-(274.26\ \hat{i}+255.75\ \hat{j})\ m\\\Rightarrow \vec{AB} = (-708.34\ \hat{i}+412.67\ \hat{j})\ m[/tex]
The magnitude of the displacement vector = [tex]\sqrt{(-708.34)^2+(412.67)^2}\ m = 819.78\ m[/tex]
Hence, the magnitude of the displacement of the plane is 819.67 m during the period of observation.