Respuesta :
Answer: The pH of resulting solution is 11
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex]
- For ethylamine:
Molarity of ethylamine solution = 0.36 M
Volume of solution = 220.3 mL
Putting values in above equation, we get:
[tex]0.36M=\frac{\text{Moles of ethylamine}\times 1000}{220.3mL}\\\\\text{Moles of ethylamine}=0.079mol[/tex]
- For Nitric acid:
Molarity of nitric acid solution = 0.26 M
Volume of solution = 125 mL
Putting values in above equation, we get:
[tex]0.25M=\frac{\text{Moles of nitric acid}\times 1000}{125mL}\\\\\text{Moles of nitric acid}=0.031mol[/tex]
The chemical reaction for ethylamine and nitric acid follows the equation:
[tex]C_2H_5NH_2+HNO_3\rightarrow C_2H_5NH_3^+NO_3^-[/tex]
Initial: 0.079 0.031
Final: 0.048 - 0.031
Volume of solution = 220.3 + 125 = 345.3 mL = 0.3453 L (Conversion factor: 1 L = 1000 mL)
- To calculate the pOH of basic buffer, we use the equation given by Henderson Hasselbalch:
[tex]pOH=pK_b+\log(\frac{[salt]}{[base]})[/tex]
[tex]pOH=pK_b+\log(\frac{[C_2H_5NH_3^+NO_3^-]}{[C_2H_5NH_2]})[/tex]
We are given:
[tex]pK_b[/tex] = negative logarithm of base dissociation constant of ethylamine = 3.19
[tex][C_2H_5NH_3^+NO_3^-]=\frac{0.031}{0.3453}[/tex]
[tex][C_2H_5NH_2]=\frac{0.048}{0.3453}[/tex]
pOH = ?
Putting values in above equation, we get:
[tex]pOH=3.19+\log(\frac{0.031/0.3453}{0.048/0.3453})\\\\pOH=3.00[/tex]
To calculate pH of the solution, we use the equation:
[tex]pH+pOH=14\\pH=14-3.00=11[/tex]
Hence, the pH of the solution is 11