Respuesta :
Answer:
The value of developed electric force is [tex]3.516\times 10^{- 7} N[/tex]
Solution:
As per the question:
Mass of the droplet = 1.8 mg = [tex]1.8\times 10^{- 6} kg[/tex]
Charge on droplet, Q = [tex]25 pC = 25\times 10^{- 12} C[/tex]
Distance between the 2 droplets, D = 0.40 cm = 0.004 m
Now, the Electrostatic force given by Coulomb:
[tex]F_{E} = \frac{1}{4\pi epsilon_{o}}.\frac{Q^{2}}{D^{2}}[/tex]
[tex]\frac{1}{4\pi epsilon_{o}} = 9\times 10^{9} m/F[/tex]
[tex]F_{E} = (9\times 10^{9}).\frac{(25\times 10^{- 12})^{2}}{0.004^{2}}[/tex]
[tex]F_{E} = 3.516\times 10^{- 7} N[/tex]
The magnitude of force is too low to be noticed.
Answer:
The electric force is
[tex]F = 3.5 \times 10^{-7} N[/tex]
Solution:
As we know that the Charge on droplet is,
[tex]Q =25 \times 10^{-12} C[/tex]
Distance between the 2 droplets,
r = 0.40 cm = 0.004 m
Now, the Electrostatic force given by Coulomb:
[tex]F = \frac{kq_1q_2}{r^2}[/tex]
here we will plug in data into above equation
[tex]F = \frac{(9\times 10^9)(25 \times 10^{-12})(25 \times 10^{-12})}{(0.004)^2}[/tex]
[tex]F = 3.5 \times 10^{-7} N[/tex]