Respuesta :
Answer:
Part a) The coordinates of B' are (16,1)
Part b) The coordinates of C' are (12,2)
Step-by-step explanation:
we know that
The vertices of ∆ABC are A(−4,2),B(6,6),C(2,7)
A translation maps point A to point A'(6,−3)
so
A(−4,2) -----> A'(6,−3)
The rule of the translation is
(x,y) ------> (x+a, y+b)
(−4,2)-----> (−4+a,2+b)
(−4+a,2+b)=(6,−3)
Solve for a
-4+a=6 ----> a=6+4=10
Solve for b
2+b=-3 ----> b=-3-2=-5
The rule of the translation is
(x,y) ------> (x+10, y-5)
That means ----> The translation is 10 units at right and 5 units down
Find the coordinates of point B'
Applying the rule of the translation
B(6,6) ------> B'(6+10,6-5)
B(6,6) ------> B'(16,1)
therefore
The coordinates of B' are (16,1)
Find the coordinates of point C'
Applying the rule of the translation
C(2,7) ------> C'(2+10,7-5)
C(2,7) ------> C'(12,2)
therefore
The coordinates of C' are (12,2)
Answer:
B(16,1)
C(12,2)
Step-by-step explanation:
In orde to calculate the other points we just have to find the translation on the example so we have to withdraw from AX2 and AY2, AX1 and AY2 respectively:
6-(-4)=+10 on the X axis
-3-2=-5 on the Y axis
Then we just add this to the other points:
B(6,6):
6+10=16
6-5=1
B2=(16,1)
C(2,7)
2+10=12
7-5=2
C2(12,2)