Respuesta :
Answer:
C.[tex]9x^{3}+11 x^{2} +3x-33[/tex]
Step-by-step explanation:
A polynomial is prime if it can't be factored in polynomials of lower degree. Let's factorize:
A. [tex]7x^{2} -35x+2x-10[/tex]
In this case we have 4 terms, so we can use Grouping:
Part a:
[tex]7x^{2} -35x[/tex]
We're going to use Greatest common factor:
[tex]=7x^{2} -7.5x\\=7x(x-5)[/tex]
Part b:
[tex]2x-10[/tex]
In this part we also use greatest common factor:
[tex]2x-10=2x-2.5\\=2(x-5)[/tex]
Then,
[tex]7x^{2} -35x+2x-10=\\ 7x(x-5)+2(x-5)=\\ =(7x+2)(x-5)[/tex]
This polynomial is not prime.
B. [tex]9x^3 + 11x^2 + 3x-33[/tex]
This polynomial cannot be factorized then it's prime.
C.[tex]10x^3-15x^2 + 8x-12[/tex]
In this polynomial we can use grouping too:
Part a:
[tex]10x^3 -15x^2=2.5x^3-3.5x^2\\=5x^2(2x-3)[/tex]
Part b:
[tex]8x-12=4.2x-4.3\\=4(2x-3)[/tex]
Then,
[tex]10x^3-15x^2 + 8x-12=\\=5x^2(2x-3)+4(2x-3)\\=(5x^2+4)(2x-3)[/tex]
This polynomial isn't prime.
D. [tex]12x^4 + 42x^2 + 4x^2 + 14[/tex]
First we're going to use Greatest common factor:
[tex]12x^4 + 42x^2 + 4x^2 + 14=\\2.6x^4+2.21x^2+2.2x^2+2.7=2(6x^4+21x^2+2x^2+7)[/tex]
Now we're going to apply grouping on the terms inside of the parenthesis:
[tex]6x^4+21x^2+2x^2+7[/tex]
Part a:
[tex]6x^4+2x^2=2.3x^4+2x^2=2x^2(3x^2+1)[/tex]
Part b:
[tex]21x^2+7=7.3x^2+7=7(3x^2+1)[/tex]
Then,
[tex]6x^4+21x^2+2x^2+7=2x^2(3x^2+1)+7(3x^2+1)\\=(2x^2+7)(3x^2+1)[/tex]
Remember that at the beginning we use Greatest common factor:
[tex]12x^4 + 42x^2 + 4x^2 + 14=\\=2.(6x^4+21x^2+2x^2+7)\\=2(2x^2+7)(3x^2+1)[/tex]
This polynomial isn't prime.