Answer:
a) [tex]244.09in^{3}[/tex]
b) [tex]1.00atm.L=101J[/tex]
Explanation:
a) You should use conversion factors as following:
[tex]4.00L*\frac{10^{3}mL}{1L}*\frac{1cm^{3}}{1mL}*(\frac{1inch}{2.54cm})^{3}=244.09in^{3}[/tex]
b) Using SI units the Joule is defined as:
[tex]J=kg\frac{m^{2}}{s^{2}}[/tex]
Now we are going to use the conversion factors given by the problem, so:
[tex]1.00atm.L*\frac{101325Pa}{1atm}=101325Pa.L[/tex]
[tex]101325Pa.L*\frac{1\frac{N}{m^{2}}}{1Pa}=101325\frac{N.L}{m^{2}}[/tex]
but in the SI, Newtons is: [tex]N=kg\frac{m}{s^{2}}[/tex], so replacing we have:
[tex]101325\frac{kg.m.L}{m^{2}.s^{2}}=101325\frac{kg.L}{m.s^{2}}[/tex]
[tex]101325\frac{kg.L}{m.s^{2}}*\frac{10^{3}mL}{1L}*\frac{1cm^{3}}{1mL}*(\frac{1m}{100cm})^{3}=101.325\frac{kg.m^{3}}{m.s^{2}}[/tex]
And [tex]101.325\frac{kg.m^{3}}{m.s^{2}}=101.325\frac{kg.m^{2}}{s^{2}}[/tex]
As the Joule is defined as:
[tex]J=kg\frac{m^{2}}{s^{2}}[/tex]
And rounding the answer we have:
[tex]101\frac{kg.m^{2}}{s^{2}}=101J[/tex]