Respuesta :
Answer:
the nucleus, the mitochondrion, and the chloroplast
Explanation:
NUCLEUS:
Of all eukaryotic organelles, the nucleus is perhaps the most critical. In fact, the mere presence of a nucleus is considered one of the defining features of a eukaryotic cell. This structure is so important because it is the site at which the cell's DNA is housed and the process of interpreting it begins.
Recall that DNA contains the information required to build cellular proteins. In eukaryotic cells, the membrane that surrounds the nucleus — commonly called the nuclear envelope — partitions this DNA from the cell's protein synthesis machinery, which is located in the cytoplasm. Tiny pores in the nuclear envelope, called nuclear pores, then selectively permit certain macromolecules to enter and leave the nucleus — including the RNA molecules that carry information from a cellular DNA to protein manufacturing centers in the cytoplasm. This separation of the DNA from the protein synthesis machinery provides eukaryotic cells with more intricate regulatory control over the production of proteins and their RNA intermediates.
In contrast, the DNA of prokaryotic cells is distributed loosely around the cytoplasm, along with the protein synthesis machinery. This closeness allows prokaryotic cells to rapidly respond to environmental change by quickly altering the types and amount of proteins they manufacture. Note that eukaryotic cells likely evolved from a symbiotic relationship between two prokaryotic cells, whereby one set of prokaryotic DNA eventually became separated by a nuclear envelope and formed a nucleus. Over time, portions of the DNA from the other prokaryote remaining in the cytoplasmic part of the cell may or may not have been incoporated into the new eukaryotic nucleus
the mitochondrion, and the chloroplast:
Besides the nucleus, two other organelles — the mitochondrion and the chloroplast — play an especially important role in eukaryotic cells. These specialized structures are enclosed by double membranes, and they are believed to have originated back when all living things on Earth were single-celled organisms. At that time, some larger eukaryotic cells with flexible membranes "ate" by engulfing molecules and smaller cells — and scientists believe that mitochondria and chloroplasts arose as a result of this process. In particular, researchers think that some of these "eater" eukaryotes engulfed smaller prokaryotes, and a symbiotic relationship subsequently developed. Once kidnapped, the "eaten" prokaryotes continued to generate energy and carry out other necessary cellular functions, and the host eukaryotes came to rely on the contribution of the "eaten" cells. Over many generations, the descendants of the eukaryotes developed mechanisms to further support this system, and concurrently, the descendants of the engulfed prokaryotes lost the ability to survive on their own, evolving into present-day mitochondria and chloroplasts. This proposed origin of mitochondria and chloroplasts is known as the endosymbiotic hypothesis.In addition to double membranes, mitochondria and chloroplasts also retain small genomes with some resemblance to those found in modern prokaryotes. This finding provides yet additional evidence that these organelles probably originated as self-sufficient single-celled organisms.
Today, mitochondria are found in fungi, plants, and animals, and they use oxygen to produce energy in the form of ATP molecules, which cells then employ to drive many processes. Scientists believe that mitochondria evolved from aerobic, or oxygen-consuming, prokaryotes. In comparison, chloroplasts are found in plant cells and some algae, and they convert solar energy into energy-storing sugars such as glucose. Chloroplasts also produce oxygen, which makes them necessary for all life as we know it. Scientists think chloroplasts evolved from photosynthetic prokaryotes similar to modern-day cyanobacteria . Today, we classify prokaryotes and eukaryotes based on differences in their cellular contents .
Answer: nucleus, mitochondria and ribosomes
Explanation:
Nucleus controls the cell
Mitochondria releases energy for cell to use
Ribosomes make proteins