The transformation of a shape involves changing the position and/or size of the shape to another. The transformation from [tex]\triangle ABC[/tex] to [tex]\triangle A'B'C'[/tex]are:
- Dilate [tex]\triangle ABC[/tex] by scale factor 3 to give [tex]\triangle A'B'C'[/tex]
- Move [tex]\triangle ABC[/tex] 2 units right and 2 units up to give [tex]\triangle A'B'C'[/tex]
Given that:
[tex]\triangle ABC[/tex] and [tex]\triangle A'B'C'[/tex]
Using AB and A'B' as points of reference, we have:
[tex]AB =2[/tex]
[tex]A'B' =6[/tex]
The scale of factor (k) is:
[tex]k = \frac{A'B'}{AB}[/tex]
[tex]k = \frac{6}{2}[/tex]
[tex]k=3[/tex]
This means that [tex]\triangle ABC[/tex] is dilated by 3 to give [tex]\triangle A'B'C'[/tex] ---- option (C) is true
Also, using point A and A' as the points of reference
[tex]A = (1,1)[/tex]
[tex]A' = (3,3)[/tex]
The movement in xy direction is:
[tex]xy = A' - A[/tex]
[tex]xy = (3,3) - (1,1)[/tex]
[tex]xy = (2,2)[/tex]
[tex]\triangle A'B'C'[/tex] is at the top right of [tex]\triangle ABC[/tex]. This means that [tex]\triangle ABC[/tex] is translated 2 units up and 2 units right. ----- option (D) is true
Hence, the true descriptions about [tex]\triangle ABC[/tex] and [tex]\triangle A'B'C'[/tex] are (c) and (d).
Read more about transformations at:
https://brainly.com/question/10644134