Respuesta :
Answer:
speed = 44.9m/s
x = 35.5 m, y = 58.0m
Explanation:
A car on a circular track with constant angular velocity ω can be described by the equation of position r:
[tex]\overrightarrow {r(t)} = Rsin(\omega t)\hat{i} + Rcos(\omega t)\hat{j}[/tex]
The velocity v is given by:
[tex]\overrightarrow {v(t)} = \overrightarrow{\frac{dr}{dt}}= \omega Rcos(\omega t)\hat{i} - \omega Rsin(\omega t)\hat{j}[/tex]
The acceleration a:
[tex]\overrightarrow {a(t)} = \overrightarrow{\frac{dv}{dt}}= -\omega^2 Rsin(\omega t)\hat{i} - \omega^2 Rcos(\omega t)\hat{j}[/tex]
From the given values we get two equations:
[tex]-\omega^2 Rsin(\omega t)=-15.4\\-\omega^2 Rcos(\omega t)=-25.4[/tex]
We also know:
[tex]\overrightarrow {a(t)} = -\omega^2 Rsin(\omega t)\hat{i} - \omega^2 Rcos(\omega t)\hat{j}=-\omega^2\overrightarrow{r(t)}[/tex]
The magnitude of the acceleration a is:
[tex]a=\sqrt{(-15.4)^2+(-25.4)^2}=29.7[/tex]
The magnitude of position r is:
[tex]r=R=68m[/tex]
Plugging in to the equation for a(t):
[tex]\overrightarrow {a(t)} =-\omega^2\overrightarrow{r(t)}[/tex]
and solving for ω:
[tex]|\omega|=0.66[/tex]
Now solve for time t:
[tex]\frac{sin(0.66t)}{cos(0.66t)}=tan(0.66t)=\frac{15.4}{25.4}\\t=0.83[/tex]
Using the calculated values to compute v(t):
[tex]\overrightarrow {v(t)}= \omega Rcos(\omega t)\hat{i} - \omega Rsin(\omega t)\hat{j}\\\overrightarrow {v(t)}=44.88cos(0.55)\hai{i}-44.88sin(0.55)\hat{j}\\\overrightarrow {v(t)}=38.3\hat{i}-23.5\hat{j}[/tex]
The speed of the car is:
[tex]\sqrt{38.3^2 + (-23.5)^2} = 44.9[/tex]
The position r:
[tex]\overrightarrow {r(t)} = Rsin(\omega t)\hat{i} + Rcos(\omega t)\hat{j}\\\overrightarrow {r(t)} = 68sin(0.55)\hat{i} + 68cos(0.55)\hat{j}\\\overrightarrow {r(t)} = 35.5{i} + 58.0\hat{j}[/tex]
Answer:
[tex]v = 44.9 m/s[/tex]
[tex]x = 68 cos58.77 = 35.25 m[/tex]
[tex]y = 68 sin58.77 = 58.14 m[/tex]
Explanation:
As we know that car drives at constant speed along circular path then we will have its position vector given as
[tex]\vec r = R cos\omega t \hat i + R sin\omega t \hat j[/tex]
now if we differentiate is with respect to time then it will give as instantaneous velocity
so we have
[tex]v = -R\omega sin\omega t \hat i + R\omega cos\omega t\hat j[/tex]
now again its differentiation with respect to time will give us acceleration
[tex]a = - R \omega^2 cos\omega t \hat i - R\omega^2 sin\omega t\hat j[/tex]
now if we compare it with given value of acceleration
[tex]a = -15.4\hat i - 25.4 \hat j[/tex]
[tex]R\omega^2cos\omega t = 15.4[/tex]
[tex]R\omega^2sin\omega t = 25.4 [/tex]
divide both equations then we will have
[tec]tan\omega t = 1.65[/tex]
[tex]\omega t = 58.77 degree[/tex]
Now we have
[tex]R = 68 m/s[/tex]
so we can solve it for
[tex]R\omega^2cos58.77 = 15.4[/tex]
[tex]\omega = 0.66 rad/s[/tex]
so speed of the car is given as
[tex]v = R\omega[/tex]
[tex]v = 0.66\times 68[/tex]
[tex]v = 44.9 m/s[/tex]
now we have coordinates of car given as
[tex]x = R cos\omega t[/tex]
[tex]x = 68 cos58.77 = 35.25 m[/tex]
[tex]y = R sin\omega t[/tex]
[tex]y = 68 sin58.77 = 58.14 m[/tex]