Respuesta :

Answer:

[tex]P=16.53\ units[/tex]

Step-by-step explanation:

we know that

The perimeter of quadrilateral PQRS is equal to the sum of its four length sides

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

the vertices P(2,4), Q(2,3), R(-2,-2), and S(-2,3)

step 1

Find the distance PQ

P(2,4), Q(2,3)

substitute in the formula

[tex]d=\sqrt{(3-4)^{2}+(2-2)^{2}}[/tex]

[tex]d=\sqrt{(-1)^{2}+(0)^{2}}[/tex]

[tex]d=\sqrt{1}[/tex]

[tex]dPQ=1\ unit[/tex]

step 2

Find the distance QR

Q(2,3), R(-2,-2)

substitute in the formula

[tex]d=\sqrt{(-2-3)^{2}+(-2-2)^{2}}[/tex]

[tex]d=\sqrt{(-5)^{2}+(-4)^{2}}[/tex]

[tex]dQR=\sqrt{41}\ units[/tex]

step 3

Find the distance RS

R(-2,-2), and S(-2,3)

substitute in the formula

[tex]d=\sqrt{(3+2)^{2}+(-2+2)^{2}}[/tex]

[tex]d=\sqrt{(5)^{2}+(0)^{2}}[/tex]

[tex]dRS=5\ units[/tex]

step 4

Find the distance PS

P(2,4), S(-2,3)

substitute in the formula

[tex]d=\sqrt{(3-4)^{2}+(-2-2)^{2}}[/tex]

[tex]d=\sqrt{(-1)^{2}+(-4)^{2}}[/tex]

[tex]dPS=\sqrt{17}\ units[/tex]

step 5

Find the perimeter

[tex]P=PQ+QR+RS+PS[/tex]

substitute the values

[tex]P=1+\sqrt{41}+5+\sqrt{17}[/tex]

[tex]P=6+\sqrt{41}+\sqrt{17}[/tex]

[tex]P=16.53\ units[/tex]