Respuesta :
Answer:
[tex]P=16.53\ units[/tex]
Step-by-step explanation:
we know that
The perimeter of quadrilateral PQRS is equal to the sum of its four length sides
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
we have
the vertices P(2,4), Q(2,3), R(-2,-2), and S(-2,3)
step 1
Find the distance PQ
P(2,4), Q(2,3)
substitute in the formula
[tex]d=\sqrt{(3-4)^{2}+(2-2)^{2}}[/tex]
[tex]d=\sqrt{(-1)^{2}+(0)^{2}}[/tex]
[tex]d=\sqrt{1}[/tex]
[tex]dPQ=1\ unit[/tex]
step 2
Find the distance QR
Q(2,3), R(-2,-2)
substitute in the formula
[tex]d=\sqrt{(-2-3)^{2}+(-2-2)^{2}}[/tex]
[tex]d=\sqrt{(-5)^{2}+(-4)^{2}}[/tex]
[tex]dQR=\sqrt{41}\ units[/tex]
step 3
Find the distance RS
R(-2,-2), and S(-2,3)
substitute in the formula
[tex]d=\sqrt{(3+2)^{2}+(-2+2)^{2}}[/tex]
[tex]d=\sqrt{(5)^{2}+(0)^{2}}[/tex]
[tex]dRS=5\ units[/tex]
step 4
Find the distance PS
P(2,4), S(-2,3)
substitute in the formula
[tex]d=\sqrt{(3-4)^{2}+(-2-2)^{2}}[/tex]
[tex]d=\sqrt{(-1)^{2}+(-4)^{2}}[/tex]
[tex]dPS=\sqrt{17}\ units[/tex]
step 5
Find the perimeter
[tex]P=PQ+QR+RS+PS[/tex]
substitute the values
[tex]P=1+\sqrt{41}+5+\sqrt{17}[/tex]
[tex]P=6+\sqrt{41}+\sqrt{17}[/tex]
[tex]P=16.53\ units[/tex]