Answer:
All real numbers greater than or equal to -1 and less than or equal to 2
Step-by-step explanation:
Let
A_1 ------> the area of rectangle
A_2 ----> the area of triangle
we know that
[tex]\left|A_1-A_2\right|\le 6[/tex]
Find out the area of rectangle
[tex]A_1=4(x+2)=(4x+8)\ units^2[/tex]
Find out the area of triangle
[tex]A_2=(1/2)(4)(5)=10\ units^2[/tex]
substitute
[tex]\left|(4x+8)-10\right|\le 6[/tex]
Simplify
[tex]\left|4x-2\right|\le 6[/tex]
First case (positive value)
[tex]+(4x-2) \leq 6[/tex]
[tex]4x \leq 6+2[/tex]
[tex]4x \leq 8[/tex]
[tex]x \leq 2[/tex]
Second case (negative value)
[tex]-(4x-2) \leq 6[/tex]
Multiply by -1 both sides
[tex](4x-2) \geq -6[/tex]
[tex](4x \geq -6+2[/tex]
[tex]4x \geq -4[/tex]
[tex]x \geq -1[/tex]
therefore
The solution for x is the interval -----> [-1,2]
All real numbers greater than or equal to -1 and less than or equal to 2