Select the correct answer.
what is the value of (4 x (1/2)-1).
What is the value of t=1
![Select the correct answerwhat is the value of 4 x 121What is the value of t1 class=](https://us-static.z-dn.net/files/d7a/de07df22c32e5ae227f0271c7a6df4eb.jpg)
For this case we must substitute the values t = 1,2,3 in the given series:
For [tex]t = 1:[/tex]
[tex]4 * (\frac {1} {2}) ^ {t-1} = 4 * (\frac {1} {2}) ^ {1-1} = 4 * (\frac {1} {2})^{0} = 4 * 1 = 4[/tex]
For [tex]t = 2[/tex]:
[tex]4 * (\frac {1} {2}) ^ {t-1} = 4 * (\frac {1} {2})^{2-1} = 4 * (\frac {1} {2})^{1} = 4 * \frac {1} {2} = 2[/tex]
For [tex]t = 3[/tex]:[tex]4 * (\frac {1} {2}) ^ {t-1} = 4 * (\frac {1} {2})^{3-1} = 4 * (\frac {1} {2})^2 = 4 * \frac {1} {4} = 1[/tex]
We add:
[tex]4 + 2 + 1 = 7[/tex]
So, the value is 7.
Answer:
Option C
Answer:
Option C.
Step-by-step explanation:
The given expression is [tex]\sum_{r=1}^{r=3}[4\times (\frac{1}{2})^{(r-1)}][/tex]
We have to find the sum of 3 terms of the sequence formed.
The given sequence is a geometric sequence.
Explicit formula for this sequence is in the form of
[tex]T_{n}=ar^{n-1}[/tex]
In the given formula first term a = 4
and common ratio r = [tex]\frac{1}{2}[/tex]
Sum of a geometric sequence is represented by the expression,
[tex]S_{n}=\frac{a(1-r^{n})}{1-r}[/tex]
[tex]S_{3}=\frac{4(1-\frac{1}{2})^{3}}{(1-\frac{1}{2})}[/tex]
[tex]S_{3}=\frac{4(1-\frac{1}{8})}{(1-\frac{1}{2})}[/tex]
[tex]S_{3}=\frac{4(\frac{7}{8})}{\frac{1}{2} }[/tex]
[tex]S_{3}=7[/tex]
Therefore, Option C is the answer.