Answer:
The ball spend [tex]3.5s[/tex] in the air.
Explanation:
The angle which maximize the distance is [tex]\theta =\frac{\pi}{4}[/tex].
From Kinematics, the position in the component [tex]y[/tex] as a function of time is: [tex]y(t)=v_0_yt-\frac{1}{2}gt^2[/tex], with [tex]g=9.8\frac{m}{s^2}[/tex].
At [tex]t[/tex] final, the ball will be in the ground and we'll have [tex]y(t_f)=0[/tex].
So,
[tex]v_0_yt_f-\frac{1}{2}gt_f^2=0[/tex] ⇒ [tex]t_f^2=\frac{2v_0_yt_f}{g}[/tex]
⇒ [tex]t_f=\frac{2v_0_y}{g}[/tex].
¿But what is the component in [tex]y[/tex] of [tex]v[/tex], [tex]v_0_y[/tex]?
This is [tex]v_0_y=v_0sin(\theta )=17.18\frac{m}{s} [/tex].
So, we finally have:
[tex]t_f=\frac{2v_0sin(\theta )}{g}=3.5s[/tex].