Respuesta :
Answer
2
Explanation
First, we are going to use the law of fractional exponents: [tex]a^{\frac{1}{n} =\sqrt[n]{a}[/tex]
We can infer form our expression that [tex]a=16[/tex] and [tex]n=4[/tex], so let's replace the values:
[tex]a^{\frac{1}{n} =\sqrt[n]{a}[/tex]
[tex]16^{\frac{1}{4} }=\sqrt[4]{16}[/tex]
Notice that we can also decompose 16 into prime factors to get [tex]16=2^4[/tex], so we can rewrite our expression as follows:
[tex]\sqrt[4]{16}=\sqrt[4]{2^4}[/tex]
Finally, we can use the rule of radicals: [tex]\sqrt[n]{a^n} =a[/tex], so:
[tex]\sqrt[4]{2^4}=2[/tex]
The simplified value of the exponential expression [tex]16^\frac{1}{4}[/tex] is [tex]2[/tex].
What does Fractional power mean for an integer?
Fractional power implies the root of the strength of the denominator of that integer.
For example: [tex]a^\frac{1}{n}=\sqrt[n]{a}[/tex].
Given here the exponential expression is [tex]16^\frac{1}{4}[/tex]
So here [tex]a=16,n=4[/tex]
We know that, [tex]2^4=16[/tex]
Thus, [tex]16^\frac{1}{4}=\sqrt[4]{16}=\sqrt[4]{2^4}=2[/tex]
Hence the equivalent value of the given expression [tex]16^\frac{1}{4}[/tex] is 2.
Learn more about Fractional Power here -
https://brainly.com/question/13689764
#SPJ2