Answer:
Max kinetic energy for 340 nm wavelength will be [tex]2.238\times 10^{-19}j[/tex]
Explanation:
In first case wavelength of electromagnetic radiation [tex]\lambda =480nm=480\times 10^{-9}m[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}J-s[/tex]
Maximum kinetic energy = 0.54 eV
Energy is given by [tex]E=\frac{hc}{\lambda }=\frac{6.6\times 10^{-34}\times 3\times 10^8}{480\times 10^{-9}}=4.125\times 10^{-19}J[/tex]
We know that energy is given
[tex]E=K_{MAX}+\Phi[/tex], here [tex]\Phi[/tex] is work function
So [tex]4.125\times 10^{-19}=0.54\times 10^{-19}+\Phi[/tex]
[tex]\Phi =3.585\times 10^{-19}J[/tex]
Now wavelength of second radiation = 340 nm
So energy [tex]E=\frac{hc}{\lambda }=\frac{6.6\times 10^{-34}\times 3\times 10^8}{340\times 10^{-9}}=5.823\times 10^{-19}J[/tex]
So [tex]K_{MAX}=5.823\times 10^{-19}-3.585\times 10^{-19}=2.238\times 10^{-19}j[/tex]