Answer:
The car moved a distance [tex]x=48.6m[/tex] .
Explanation:
First we need to know: How much time will the tomato spend in the air?
From Kinematics: [tex]v_y(t)=v_0_y+at[/tex]
where [tex]v_0_y=10.6\frac{m}{s}[/tex] and [tex]a=-g=-9.8\frac{m}{s^2}[/tex] is gravity's acceleration.
[tex]v_y(t)=v_0_y-gt[/tex]
When the tomato touches the car again, [tex]v_y=-v_0_y=-10.6\frac{m}{s}[/tex]
Then, we have:
[tex]t=\frac{v_y-v_o_y}{-g}[/tex] ⇒ [tex]t=\frac{v_y-v_o_y}{-g}=2.16s[/tex]
Also from Kinematics we have: [tex]x(t)=v_xt[/tex]
Which is very simple because we can take initial position 0 and there's no acceleration in the x direction. And [tex]v_x=22.5\frac{m}{s}[/tex]
So, taking [tex]t=2.16s[/tex]
[tex]x=48.6m[/tex]