Respuesta :
Answer:
A- [tex]a_{j} =1.5[/tex][tex]\frac{m}{s^{2} }[/tex]
B- [tex]a_{c} =1.5[/tex][tex]\frac{m}{s^{2} }[/tex]
C- Yes, it does. The car travels 76.0m further than the jogger.
Explanation:
To calculate acceleration we have to use the following equation of motion:
[tex]v=v_{o} +at[/tex]
[tex]v:[/tex]Velocity
[tex]v_{0}:[/tex]Starting velocity
[tex]a:[/tex]Acceleration
[tex]t:[/tex]Time
So now, we get acceleration as:
[tex]a=\frac{v-v_{0} }{t}[/tex]
A- The jogger accelerates from rest, this means [tex]v_{0} =0.0\frac{m}{s}[/tex], to [tex]v=3.0\frac{m}{s}[/tex] in [tex]t=2.0s[/tex]
Replacing the data in the acceleration fórmula:
[tex]a_{j}=\frac{v-v_{0} }{t}[/tex]
[tex]a_{j}=\frac{3.0\frac{m}{s} -0\frac{m}{s}}{2.0s}[/tex]
[tex]a_{j}=1.5\frac{m}{s^{2} }[/tex]
B- The car accelerates from [tex]v_{0} =38.0\frac{m}{s}[/tex] to [tex]v=41.0\frac{m}{s}[/tex] in [tex]t=2.0s[/tex]
Using the same formula from A:
[tex]a_{c}=\frac{v-v_{0} }{t}[/tex]
[tex]a_{c}=\frac{41\frac{m}{s}-38\frac{m}{s}}{2.0s}[/tex]
[tex]a_{c}=1.5\frac{m}{s^{2} }[/tex]
C-Now we have to calculate distance to know if the car travels further than the jogger, we need to use the following formula:
[tex]x=v_{0}t+\frac{1}{2} at^{2}[/tex],
[tex]x:[/tex]Distance.
For the jogger,
[tex]x_{j}=v_{0}t +\frac{1}{2} at^{2}[/tex]
[tex]x_{j} =0.0\frac{m}{s}.(0.0s)+\frac{1}{2} (1.5\frac{m}{s^{2} } )(2.0s)^{2}[/tex]
[tex]x_{j}=3.0m[/tex]
For the car,
[tex]x_{c}=v_{0} +\frac{1}{2} at^{2}[/tex]
[tex]x_{c} =38\frac{m}{s} +\frac{1}{2} (1.5\frac{m}{s^{2}})(2s)^{2}[/tex]
[tex]x_{c} =79.0m[/tex]
Then, [tex]x_{c} -x_{j}=79.0m-3.0m=76.0m[/tex]
The car travels 76.0m further than the jogger.