PLEASE HELP me!! will give brainliest!! (:
Is the given linear expression a factor of the polynomial? Show your work.
f(x)=x^3-4x^2-7x+10; x-5
Thanks so much! (:

Respuesta :

Answer:

The answer to your question is: Yes, x - 5  is a factor of the polynomial.

Step-by-step explanation:

To answer this question you need  to divide the polynomial by the factor and if there is nothing left, they are factor.

                   

                             x³ -4x² -7x +10

                                      x -5

                         

                         x²  + x -2

              x-5      x³ -4x² -7x +10

                        -x³ + 5x²

                               x²  - 7x

                             -x²   + 5x

                                      -2x + 10

                                      +2x -10

                                         0     0       These zeros tell us that the linear

                                                          expression is a factor of the polynomial                

                                     

Wolfyy

Hey!

-------------------------------------------------

Solution:

[tex]f(x)= \frac{x^3-4x^2-7x+10}{x-5}\\f(x)= x^2 + x - 2\\f(x)= (x^2 + x - 2)(x-5)\\f(x)= (x+2) (x-1) (x-5)[/tex]

-------------------------------------------------

Answer:

[tex]f(x) = (x+2) (x-1) (x-5)[/tex]

x - 5 is a factor of this polynomial.

-------------------------------------------------

Hope This Helped! Good Luck!

ACCESS MORE