Respuesta :
Answer:
The answer to your question is: Yes, x - 5 is a factor of the polynomial.
Step-by-step explanation:
To answer this question you need to divide the polynomial by the factor and if there is nothing left, they are factor.
x³ -4x² -7x +10
x -5
x² + x -2
x-5 x³ -4x² -7x +10
-x³ + 5x²
x² - 7x
-x² + 5x
-2x + 10
+2x -10
0 0 These zeros tell us that the linear
expression is a factor of the polynomial
Hey!
-------------------------------------------------
Solution:
[tex]f(x)= \frac{x^3-4x^2-7x+10}{x-5}\\f(x)= x^2 + x - 2\\f(x)= (x^2 + x - 2)(x-5)\\f(x)= (x+2) (x-1) (x-5)[/tex]
-------------------------------------------------
Answer:
[tex]f(x) = (x+2) (x-1) (x-5)[/tex]
x - 5 is a factor of this polynomial.
-------------------------------------------------
Hope This Helped! Good Luck!