I need help finding both a and b
![I need help finding both a and b class=](https://us-static.z-dn.net/files/d99/81d9428482afb940453c1668af93cd56.jpg)
Answer:
a)
[tex] h^{-1}(x) = 2x + 8 [/tex]
b)
[tex] k^{-1}(x) = \pm\sqrt{x - 3} [/tex]
Step-by-step explanation:
To find an inverse function, follow these steps.
Step 1. Write the function.
Step 2. Replace the function name in function notation with y.
Step 3. Switch x and y.
Step 4. Solve for y.
Step 5. Replace y with function notation for inverse function.
Now let's do part a) following the steps above.
Step 1.
[tex] h(x) = \dfrac{1}{2}x - 4 [/tex]
Step 2.
[tex] y = \dfrac{1}{2}x - 4 [/tex]
Step 3.
[tex] x = \dfrac{1}{2}y - 4 [/tex]
Step 4.
[tex] x = \dfrac{1}{2}y - 4 [/tex]
[tex] x + 4 = \dfrac{1}{2}y [/tex]
[tex] 2x + 8 = y [/tex]
[tex] y = 2x + 8 [/tex]
Step 5.
[tex] h^{-1}(x) = 2x + 8 [/tex]
Now let's do part b) following the steps above.
Step 1.
[tex] k(x) = x^2 + 3 [/tex]
Step 2.
[tex] y = x^2 + 3 [/tex]
Step 3.
[tex] x = y^2 + 3 [/tex]
Step 4.
[tex] x = y^2 + 3 [/tex]
[tex] x - 3 = y^2 [/tex]
[tex] y^2 = x - 3 [/tex]
[tex] y = \pm\sqrt{x - 3} [/tex]
Step 5.
[tex] k^{-1}(x) = \pm\sqrt{x - 3} [/tex]