An electron is released from rest at the negative plate of a parallel plate capacitor. The charge per unit area on each plate is σ = 1.69E-7 C/m2, and the plates are separated by a distance of 1.75E-2 m. How fast is the electron moving just before it reaches the positive plate?

Respuesta :

Answer:

[tex]v=1.08\times 10^7\ m/s[/tex]

Explanation:

Initial speed of the electron, u = 0

The charge per unit area of each plate, [tex]\dfrac{Q}{A}=1.69\times 10^{-7}\ C/m^2[/tex]

Separation between the plates, [tex]d=1.75\times 10^{-2}\ m[/tex]

An electron is released from rest, u = 0

Using equation of kinematics,

[tex]v^2-u^2=2ad[/tex]..........(1)

Acceleration of the electron in electric field, [tex]a=\dfrac{qE}{m}[/tex]............(2)

Electric field, [tex]E=\dfrac{\sigma}{\epsilon_o}[/tex]............(3)

From equation (1), (2) and (3) :

[tex]v=\sqrt{\dfrac{2q\sigma d}{m\epsilon_o}}[/tex]

[tex]v=\sqrt{\dfrac{2\times 1.6\times 10^{-19}\times 1.69\times 10^{-7}\times 1.75\times 10^{-2}}{9.1\times 10^{-31}\times 8.85\times 10^{-12}}}[/tex]

v = 10840393.1799 m/s

or

[tex]v=1.08\times 10^7\ m/s[/tex]

So, the electron is moving with a speed of [tex]1.08\times 10^7\ m/s[/tex] before it reaches the positive plate. Hence, this is the required solution.

ACCESS MORE