Answer:
[tex]v=1.08\times 10^7\ m/s[/tex]
Explanation:
Initial speed of the electron, u = 0
The charge per unit area of each plate, [tex]\dfrac{Q}{A}=1.69\times 10^{-7}\ C/m^2[/tex]
Separation between the plates, [tex]d=1.75\times 10^{-2}\ m[/tex]
An electron is released from rest, u = 0
Using equation of kinematics,
[tex]v^2-u^2=2ad[/tex]..........(1)
Acceleration of the electron in electric field, [tex]a=\dfrac{qE}{m}[/tex]............(2)
Electric field, [tex]E=\dfrac{\sigma}{\epsilon_o}[/tex]............(3)
From equation (1), (2) and (3) :
[tex]v=\sqrt{\dfrac{2q\sigma d}{m\epsilon_o}}[/tex]
[tex]v=\sqrt{\dfrac{2\times 1.6\times 10^{-19}\times 1.69\times 10^{-7}\times 1.75\times 10^{-2}}{9.1\times 10^{-31}\times 8.85\times 10^{-12}}}[/tex]
v = 10840393.1799 m/s
or
[tex]v=1.08\times 10^7\ m/s[/tex]
So, the electron is moving with a speed of [tex]1.08\times 10^7\ m/s[/tex] before it reaches the positive plate. Hence, this is the required solution.