Answer:
[tex]Q = 2.74 \times 10^{-13} C[/tex]
Explanation:
A rain drop has diameter given as
[tex]d = 0.020 mm[/tex]
so the radius of the rain drop will be
[tex]R = 0.010 mm[/tex]
now the volume of the rain drop is given as
[tex]V = \frac{4}{3}\pi R^3[/tex]
[tex]V = \frac{4}{3}\pi(0.010\times 10^{-3})^3[/tex]
[tex]V = 4.19 \times 10^{-15} m^3[/tex]
now weight of the rain drop is given as
[tex]W = \rho V g[/tex]
[tex]W = (1000)(4.19 \times 10^{-15})(9.81)[/tex]
[tex]W = 4.11 \times 10^{-11} N[/tex]
now this weight of the rain drop is counterbalanced by force due to electric field
so we have
[tex]QE = W[/tex]
[tex]Q = \frac{W}{E}[/tex]
[tex]Q = \frac{4.11 \times 10^{-11}}{150}[/tex]
[tex]Q = 2.74 \times 10^{-13} C[/tex]