A coin is dropped from a hot-air balloon that is 300 m above the ground and rising at 10.0 m/s upward. For the coin, find (a) the maximum height reached, (b) its position and velocity 4.00 s after being released, and (c) the time before it hits the ground

Respuesta :

Answer:

a) Maximum height will be [tex]h=300+\Delta y=305.10m[/tex].

b) [tex]y(4s)=261.6m[/tex].

c) The time before it hits the ground is [tex]t = 6.87s.[/tex].

Explanation:

Initial position: [tex]y_{i}=300m[/tex]

Initial velocity: [tex]v_{i}=10.0 \frac{m}{s}[/tex]

Gravity's acceleration: [tex]g=-9.8 \frac{m}{s^{2} }[/tex]

a) From Kinematics: [tex]v^2=v_0^2+2g\Delta y[/tex]

⇒ [tex]\Delta y=\frac{v^2-v_0^2}{2g}[/tex]

When the coin reaches it's maximum height, it's velocity will be [tex]v=0 \frac{m}{s}[/tex]

⇒ [tex]\Delta y=\frac{v_0^2}{2g}[/tex] ⇒ [tex]\Delta y=5.10m[/tex].

Maximum height will be [tex]h=300+\Delta y=305.10m[/tex].

b) From Kinematics, the movement law will be:

[tex]y(t)=y_0 + v_0t + \frac{1}{2}gt^2[/tex]

where [tex]y_0=300m[/tex] is the position where the coin is dropped.

At [tex]t=4s[/tex]:

[tex]y(4s)=261.6m[/tex].

c) Again, we have that:

[tex]y(t)=y_0 + v_0t + \frac{1}{2}gt^2[/tex]

Now, if [tex]y[/tex] final is [tex]y(t_f)=0[/tex], then

[tex]y_0 + v_0t_f + \frac{1}{2}gt_f^2=0[/tex].

We need to use the resolvent to solve this equation:

[tex]t=\frac{-b\pm \sqrt{b^2-4ac}}{2a}=\frac{-v_0\pm \sqrt{v_0^2-2g y_0}}{g}[/tex]

⇒ [tex]t = 6.87s.[/tex].

ACCESS MORE