Answer:
a) Maximum height will be [tex]h=300+\Delta y=305.10m[/tex].
b) [tex]y(4s)=261.6m[/tex].
c) The time before it hits the ground is [tex]t = 6.87s.[/tex].
Explanation:
Initial position: [tex]y_{i}=300m[/tex]
Initial velocity: [tex]v_{i}=10.0 \frac{m}{s}[/tex]
Gravity's acceleration: [tex]g=-9.8 \frac{m}{s^{2} }[/tex]
a) From Kinematics: [tex]v^2=v_0^2+2g\Delta y[/tex]
⇒ [tex]\Delta y=\frac{v^2-v_0^2}{2g}[/tex]
When the coin reaches it's maximum height, it's velocity will be [tex]v=0 \frac{m}{s}[/tex]
⇒ [tex]\Delta y=\frac{v_0^2}{2g}[/tex] ⇒ [tex]\Delta y=5.10m[/tex].
Maximum height will be [tex]h=300+\Delta y=305.10m[/tex].
b) From Kinematics, the movement law will be:
[tex]y(t)=y_0 + v_0t + \frac{1}{2}gt^2[/tex]
where [tex]y_0=300m[/tex] is the position where the coin is dropped.
At [tex]t=4s[/tex]:
[tex]y(4s)=261.6m[/tex].
c) Again, we have that:
[tex]y(t)=y_0 + v_0t + \frac{1}{2}gt^2[/tex]
Now, if [tex]y[/tex] final is [tex]y(t_f)=0[/tex], then
[tex]y_0 + v_0t_f + \frac{1}{2}gt_f^2=0[/tex].
We need to use the resolvent to solve this equation:
[tex]t=\frac{-b\pm \sqrt{b^2-4ac}}{2a}=\frac{-v_0\pm \sqrt{v_0^2-2g y_0}}{g}[/tex]
⇒ [tex]t = 6.87s.[/tex].