Answer:
The work done was W=720lb.ft
Explanation:
Here weight is a lineal function of the vertical position. Let's put it in the following way:
[tex]w(y)=ay+b[/tex]
where w is the weight and y is the vertical position (how high it is the bag).
So, from the information given:
[tex]w(0)=144lb[/tex] ⇒ [tex]a0+b=b=144lb[/tex]
[tex]w(10ft)=\frac{144lb}{2} =72lb[/tex] ⇒ [tex]a10ft+b=a10ft+144lb=72lb[/tex] ⇒ [tex]a=\frac{72lb-144lb}{10ft} =-7.2\frac{lb}{ft}[/tex]
∴ [tex]w(y)=-7.2\frac{lb}{ft}y+144lb[/tex]
So, the work done will be:
[tex]W=\int\limits^{10ft}_0 {w(y)} \, dy =\int\limits^{10ft}_0 {-7.2\frac{lb}{ft}y+144lb} \, dy = \int\limits^{10ft}_0 {-7.2\frac{lb}{ft}y} \, dy + \int\limits^{10ft}_0 {144lb} \, dy=[/tex]
[tex]= -7.2\frac{lb}{ft}\frac{1}{2} ((10ft)^2-0^2) + 144lb. 10ft=720lb.ft[/tex]
∴ W=720lb.ft