Answer: 10.175 m
Explanation:
This situation is related to parabolic movement with constant acceleration (due gravity) and can be modeled by the following equations:
[tex]V^{2}=V_{o}}^{2}-2gy[/tex] (1)
[tex]V=V_{o}-g.t[/tex] (2)
[tex]x=V_{o}cos\theta t[/tex] (3)
Where:
[tex]y=13m[/tex] is the baseball's final height (when it lands on the building's roof)
[tex]V_{o}=27\frac{m}{s}[/tex] is the baseball's initial velocity
[tex]V[/tex] is the baseball's final velocity
[tex]t[/tex] is the time the parabolic movement lasts until the baseball lands on the roof
[tex]g=9.8 \frac{m}{s^{2}}[/tex] is the acceleration due to gravity
[tex]x[/tex] is the horizontal distance the baseball travels
[tex]\theta=45\°[/tex] is the angle at which the baseball was hit
Let's begin finding [tex]V[/tex] with (1):
[tex]V=\sqrt{V_{o}}^{2}-2gy}[/tex] (4)
[tex]V=\sqrt{(27\frac{m}{s})^{2}-2(9.8 \frac{m}{s^{2}})(13 m)}[/tex] (5)
[tex]V=21.776 \frac{m}{s}[/tex] (6)
Substituting (6) in (2):
[tex]21.776 \frac{m}{s}=27\frac{m}{s}-(9.8 \frac{m}{s^{2}}).t[/tex] (7)
Isolating [tex]t[/tex]:
[tex]t=0.533 s[/tex] (8)
Substituting (8) in (3):
[tex]x=27\frac{m}{s}cos(45\°) 0.533 s[/tex] (9)
Finally:
[tex]x=10.175 m[/tex]