A baseball is hit with a speed of 27.0 m/s at an angle of 45.0o. It lands on the flat roof of a 13.0 m tall nearby building. If the ball was hit when it was 1.0 m above the ground, what horizontal distance does it travel before it lands on the building?

Respuesta :

Answer: 10.175 m

Explanation:

This situation is related to parabolic movement with constant acceleration (due gravity) and can be modeled by the following equations:

[tex]V^{2}=V_{o}}^{2}-2gy[/tex]    (1)

[tex]V=V_{o}-g.t[/tex]    (2)

[tex]x=V_{o}cos\theta t[/tex]    (3)

Where:

[tex]y=13m[/tex]  is the baseball's final height (when it lands on the building's roof)

[tex]V_{o}=27\frac{m}{s}[/tex] is the  baseball's initial velocity

[tex]V[/tex] is the baseball's final velocity

[tex]t[/tex] is the time the parabolic movement lasts  until the baseball lands on the roof

[tex]g=9.8 \frac{m}{s^{2}}[/tex]  is the acceleration due to gravity

[tex]x[/tex] is the horizontal distance  the baseball travels

[tex]\theta=45\°[/tex] is the angle at which the baseball was hit

Let's begin finding [tex]V[/tex]  with (1):

[tex]V=\sqrt{V_{o}}^{2}-2gy}[/tex]    (4)

[tex]V=\sqrt{(27\frac{m}{s})^{2}-2(9.8 \frac{m}{s^{2}})(13 m)}[/tex]    (5)

[tex]V=21.776 \frac{m}{s}[/tex]    (6)

Substituting (6) in (2):

[tex]21.776 \frac{m}{s}=27\frac{m}{s}-(9.8 \frac{m}{s^{2}}).t[/tex]    (7)

Isolating [tex]t[/tex]:

[tex]t=0.533 s[/tex]    (8)

Substituting (8) in (3):

[tex]x=27\frac{m}{s}cos(45\°) 0.533 s[/tex]    (9)

Finally:

[tex]x=10.175 m[/tex]

ACCESS MORE