Find the point B on AC such that the ratio of AB to BC is 2:3
![Find the point B on AC such that the ratio of AB to BC is 23 class=](https://us-static.z-dn.net/files/d73/5077f083b7d79342e5b48e44805e8ef9.png)
Answer:
B(4, - 3 )
Step-by-step explanation:
We have A(2, - 7) and C(7, 3 )
Using the section formula to calculate the coordinates of B
[tex]x_{B}[/tex] = [tex]\frac{3(2)+2(7)}{2+3}[/tex] = [tex]\frac{6+14}{5}[/tex] = [tex]\frac{20}{5}[/tex] = 4
[tex]y_{B}[/tex] = [tex]\frac{3(-7)+2(3)}{2+3}[/tex] = [tex]\frac{-21+6}{5}[/tex] = [tex]\frac{-15}{5}[/tex] = - 3
Hence B(4, - 3 )