Answer:
Temperature, T = - 537.95 K
[tex]\rho_{f} = 1.07\times 10^{8} Pa[/tex]
Given:
no. of moles, n = 2
initial volume, V =[tex]245.1 cm^{3} = 245.1\times 10^{- 6} m^{3}[/tex]
final volume, V = [tex]125.0 cm^{3} = 152.0\times 10^{- 6} m^{3}[/tex]
heat, q = 2166 cal = [tex]2166\times 4.19 = 9075.54 J[/tex]
Rydberg's constant, R = 9.31 J/mol.K
Solution:
Now, using the formula for the calculation of temperature:
[tex]q = nRTln\frac{V'}{V}[/tex]
where
T = temperature
[tex]9075.54 = 2\times 8.31\times T ln\frac{125.0}{245.1}[/tex]
[tex]T = - 810.95^{\circ} = - 810.95^{\circ} + 273 = - 537.95 K[/tex]
Now, using:
[tex]V'\rho_{f} = nRT[/tex]
[tex]125.0\times 10^{- 6}\rho_{f} = 2\times 8.31\times - 810.95^{\circ}[/tex]
[tex]\rho_{f} = 1.07\times 10^{8} Pa[/tex]