Answer :
The standard Gibbs free energy is, -27640.414 J
The standard cell potential is, 0.29 V
Explanation :
First we have to calculate the [tex]\Delta G_^o[/tex].
Formula used :
[tex]\Delta G^o=-nRT\times \ln K[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy = ?
R = gas constant = 8.314 J/K.mole
n = number of moles = 1 mole
T = temperature = [tex]25^oC=273+25=298K[/tex]
k = equilibrium constant = [tex]7.0\times 10^4[/tex]
Now put all the given values in this formula, we get:
[tex]\Delta G^o=-(1mole)\times (8.314J/mole.K)\times (298K)\times \ln (7.0\times 10^{4})[/tex]
[tex]\Delta G^o=-27640.414J[/tex]
The standard Gibbs free energy is, -27640.414 J
Now we have to calculate the standard cell potential.
Formula used :
[tex]\Delta G^o=-nFE^o[/tex]
where,
[tex]\Delta G^o[/tex] = Gibbs free energy = -27640.414 J
n = number of electrons = 1
F = Faraday constant = 96500 C/mole
[tex]E^o[/tex] = standard e.m.f of cell = ?
Now put all the given values in this formula, we get the Gibbs free energy.
[tex]-27640.414J=-(1\times 96500\times E^o)[/tex]
[tex]E^o=0.29V[/tex]
The standard cell potential is, 0.29 V