Respuesta :
Explanation:
Given that,
Temperature = 1000 K
We need to calculate the intensity of thermal radiation from a black body
For wavelength 1000 nm
Using Raleigh-Jeans Law
[tex]B_{k}=\dfrac{8\pi kT}{\lambda^4}[/tex]
Put the value into the formula
[tex]B_{k}=\dfrac{8\times\pi\times1.38\times10^{-23}\times1000}{(1000\times10^{-9})^{4}}[/tex]
[tex]B_{k}=346831.828956[/tex]
[tex]B_{k}=34.68\times10^{4}\ W[/tex]
For wavelength 500 nm
[tex]B_{k}=\dfrac{8\times\pi\times1.38\times10^{-23}\times1000}{(500\times10^{-9})^{4}}[/tex]
[tex]B_{k}=5549309[/tex]
[tex]B_{k}=55.49\times10^{5}\ W[/tex]
For wavelength 100 nm
[tex]B_{k}=\dfrac{8\times\pi\times1.38\times10^{-23}\times1000}{(100\times10^{-9})^{4}}[/tex]
[tex]B_{k}=3.47\times10^{9}\ W[/tex]
We need to calculate the intensity
Using Plank's Law
[tex]E=\dfrac{2hc^2}{\lambda^5}\times\dfrac{1}{e^{\dfrac{hc}{\lambda k T}}-1}[/tex]
For wavelength 1000 nm
Put the value into the formula
[tex]E=\dfrac{2\times6.63\times10^{-34}\times(3\times10^{8})^2}{(1000\times10^{-9})^5}\times\dfrac{1}{e^{\dfrac{6.63\times10^{-34}\times3\times10^{8}}{1000\times10^{-9}\times 1.38\times10^{-23}\times1000}}-1}[/tex]
[tex]E=65.65\times10^{6}\ W/m^2.K^4[/tex]
For wavelength 500 nm
[tex]E=\dfrac{2\times6.63\times10^{-34}\times(3\times10^{8})^2}{(500\times10^{-9})^5}\times\dfrac{1}{e^{\dfrac{6.63\times10^{-34}\times3\times10^{8}}{500\times10^{-9}\times 1.38\times10^{-23}\times1000}}-1}[/tex]
[tex]E=11.56\times10^{2}\ W/m^2.K^4[/tex]
For wavelength 100 nm
[tex]E=\dfrac{2\times6.63\times10^{-34}\times(3\times10^{8})^2}{(100\times10^{-9})^5}\times\dfrac{1}{e^{\dfrac{6.63\times10^{-34}\times3\times10^{8}}{100\times10^{-9}\times 1.38\times10^{-23}\times1000}}-1}[/tex]
[tex]E=3.032\times10^{-44}\ W/m^2.K^4[/tex]
Hence, This is the required solution.