Answer : The specific heat of unknown sample is, [tex]8748.78J/kg^oC[/tex]
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-[q_2+q_3][/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-[m_2\times c_2\times (T_f-T_2)+m_3\times c_3\times (T_f-T_2)][/tex]
where,
[tex]c_1[/tex] = specific heat of unknown sample = ?
[tex]c_2[/tex] = specific heat of water = [tex]4186J/kg^oC[/tex]
[tex]c_3[/tex] = specific heat of copper = [tex]390J/kg^oC[/tex]
[tex]m_1[/tex] = mass of unknown sample = 72.0 g = 0.072 kg
[tex]m_2[/tex] = mass of water = 203 g = 0.203 kg
[tex]m_2[/tex] = mass of copper = 187 g = 0.187 kg
[tex]T_f[/tex] = final temperature of calorimeter = [tex]39.4^oC[/tex]
[tex]T_1[/tex] = initial temperature of unknown sample = [tex]80.0^oC[/tex]
[tex]T_2[/tex] = initial temperature of water and copper = [tex]11.0^oC[/tex]
Now put all the given values in the above formula, we get
[tex]0.072kg\times c_1\times (39.4-80.0)^oC=-[(0.203kg\times 4186J/kg^oC\times (39.4-11.0)^oC)+(0.187kg\times 390J/kg^oC\times (39.4-11.0)^oC)][/tex]
[tex]c_1=8748.78J/kg^oC[/tex]
Therefore, the specific heat of unknown sample is, [tex]8748.78J/kg^oC[/tex]