Answer:25.873 m
Explanation:
Original frequency [tex](f_s)=509 Hz[/tex]
Acceleration due to gravity =9.80 m/s^2
Observed frequency[tex](f_0) =486 Hz[/tex]
When the source is receding from stationary observer then
[tex]f_0=f_s\left [ \frac{v}{v-(-v_s)} \right ][/tex]
[tex]f_0=f_s\left [ \frac{v}{v+v_s} \right ][/tex]
[tex]v_s=v\left [ \frac{f_s}{f_0}-1\right ][/tex]
[tex]v_s=340\left [\frac{514}{483}-1 \right ][/tex]
[tex]v_s=21.82 m/s[/tex]
[tex]velocity =\frac{distance}{tme}[/tex]
Distance tuning fork has fallen to reach this speed
[tex]\delta y=\frac{v^2-0}{2a}[/tex]
[tex]\delta y=\frac{(21.82)^2}{2\times 9.8}[/tex]
[tex]\delta y=24.29 m[/tex]
Time required to reach the sound to the observer
[tex]t=\frac{\delta y_1}{v}[/tex]
[tex]t=\frac{24.29}{340}[/tex]
t=0.071 s
During this time fork has traveled an additional distance of
[tex]\delta y_2=v_st+\frac{1}{2}at^2[/tex]
[tex]\delta y_2=21.82\times 0.071+\frac{1}{2}(9.81)(0.071)^2[/tex]
[tex]\delta y_2=1.583[/tex]
[tex]Total distance=\delta y_1+\delta y_2=24.29+1.583=25.873 m[/tex]