Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given the 3 equations

3x + 5y + 5z = 1 → (1)

x - 2y = 5 → (2)

2x + 4y = 11 → (3)

Use (2) and (3) to solve for x and y

Multiply (2) by 2

2x - 4y = 10 → (4)

Add (3) and (4) term by term

4x = 21 ( divide both sides by 4 )

x = [tex]\frac{21}{4\\}[/tex]

Substitute this value of x into (3)

2 × [tex]\frac{21}{4\\}[/tex] + 4y = 11

[tex]\frac{21}{2\\}[/tex] + 4y = 11 ( subtract [tex]\frac{21}{2\\}[/tex] from both sides )

4y = [tex]\frac{1}{2}[/tex] ( divide both sides by 4 )

y = [tex]\frac{1}{8\\}[/tex]

Substitute the values of x and y into (1) and solve for z

3 × [tex]\frac{21}{4\\}[/tex] + 5 × [tex]\frac{1}{8\\}[/tex] + 5z = 1

[tex]\frac{63}{4}[/tex] + [tex]\frac{5}{8}[/tex] + 5z = 1

[tex]\frac{131}{8}[/tex] + 5z = 1 ( subtract [tex]\frac{131}{8}[/tex] from both sides )

5z = - [tex]\frac{123}{8}[/tex] ( divide both sides by 5 )

z = - [tex]\frac{123}{40}[/tex]

Solution is

x = [tex]\frac{21}{4\\}[/tex], y = [tex]\frac{1}{8\\}[/tex], z = - [tex]\frac{123}{40}[/tex]

RELAXING NOICE
Relax