Respuesta :
Answer:
[tex]q(x,y,z)=16x^{2}-5y^{2}-5z^{2}[/tex]
Step-by-step explanation:
The given quadratic form is of the form
[tex]q(x,y,z)=ax^2+by^2+dxy+exz+fyz[/tex].
Where [tex]a=11,b=-1,c=-4,d=-16,e=8,f=-4[/tex].Every quadratic form of this kind can be written as
[tex]q(x,y,z)={\bf x}^{T}A{\bf x}=ax^2+by^2+cz^2+dxy+exz+fyz=\left(\begin{array}{ccc}x&y&z\end{array}\right) \left(\begin{array}{ccc}a&\frac{1}{2} d&\frac{1}{2} e\\\frac{1}{2} d&b&\frac{1}{2} f\\\frac{1}{2} e&\frac{1}{2} f&c\end{array}\right) \left(\begin{array}{c}x&y&z\end{array}\right)[/tex]
Observe that [tex]A[/tex] is a symmetric matrix. So [tex]A[/tex] is orthogonally diagonalizable, that is to say, [tex]D=Q^{T}AQ[/tex] where [tex]Q[/tex] is an orthogonal matrix and [tex]D[/tex] is a diagonal matrix.
In our case we have:
[tex]A=\left(\begin{array}{ccc}11&(\frac{1}{2})(-16) &(\frac{1}{2}) (8)\\(\frac{1}{2}) (-16)&(-1)&(\frac{1}{2}) (-4)\\(\frac{1}{2}) (8)&(\frac{1}{2}) (-4)&(-4)\end{array}\right)=\left(\begin{array}{ccc}11&-8 &4\\-8&-1&-2\\4&-2&-4\end{array}\right)[/tex]
The eigenvalues of [tex]A[/tex] are [tex]\lambda_{1}=16,\lambda_{2}=-5,\lambda_{3}=-5[/tex].
Every symmetric matriz is orthogonally diagonalizable. Applying the process of diagonalization by an orthogonal matrix we have that:
[tex]Q=\left(\begin{array}{ccc}\frac{4}{\sqrt{21}}&-\frac{1}{\sqrt{17}}&\frac{8}{\sqrt{357}}\\\frac{-2}{\sqrt{21}}&0&\sqrt{\frac{17}{21}}\\\frac{1}{\sqrt{21}}&\frac{4}{\sqrt{17}}&\frac{2}{\sqrt{357}}\end{array}\right)[/tex]
[tex]D=\left(\begin{array}{ccc}16&0&0\\0&-5&0\\0&0&-5\end{array}\right)[/tex]
Now, we have to do the change of variables [tex]{\bf x}=Q{\bf y}[/tex] to obtain
[tex]q({\bf x})={\bf x}^{T}A{\bf x}=(Q{\bf y})^{T}AQ{\bf y}={\bf y}^{T}Q^{T}AQ{\bf y}={\bf y}^{T}D{\bf y}=\lambda_{1}y_{1}^{2}+\lambda_{2}y_{2}^{2}+\lambda_{3}y_{3}^{2}=16y_{1}^{2}-5y_{2}^{2}-5y_{3}^2[/tex]
Which can be written as:
[tex]q(x,y,z)=16x^{2}-5y^{2}-5z^{2}[/tex]