Answer:
[tex]q_{1} = 5.756\micro C[/tex]
[tex]q_{2} = 5.43\micro C[/tex]
[tex]q_{3} = 1.91\micro C[/tex]
Given:
Resistance, R = 7.1[tex]\ohm[/tex]
Inductance, L = 11.8 H
Capacitance, C = 3.2[tex]\micro F[/tex]
Initial charge in the capacitor, [tex]q_{i} = 6.1\micro C[/tex]
Solution:
Charge is given by:
q = q'e[tex]^{-t\frac{R}{2L}}cos(\omega t + \theta)[/tex] (1)
Now,
t = NT
T = [tex]\frac{2\pi}{\omega}[/tex]
Thus
t = [tex]\frac{2\pi N}{\omega}[/tex]
Substituting the above value of t in eqn (1):
q = q'e[tex]^{- RN\frac{\frac{2\pi}{\omega}}{2L}}cos(\omega \frac{2\pi N}{\omega} + \theta)[/tex]
q = q'e[tex]^{- RN\frac{\frac{2\pi}{\sqrt{\frac{L}{C}}}}{2L}}cos(2\pi N + \theta)[/tex]
q = q'e[tex]^{- \pi RN\sqrt {\frac{C}{L}}} cos \theta[/tex]
where
[tex]q'cos\theta = q_{i}[/tex] = initial charge
q = q_{i}e[tex]^{- \pi RN\sqrt {\frac{C}{L}}}[/tex]
Calculation of complete cycle for:
(a) N = 5
[tex]q_{1} = 6.1\times 10^{-6}e^{- 5\time 7.1\pi \sqrt{\frac{3.2\times 10^{-6}}{11.8}}} = 5.756\micro C[/tex]
(b) N = 10
[tex]q_{2} = 6.1\times 10^{-6}e^{- 10\time 7.1\pi \sqrt{\frac{3.2\times 10^{-6}}{11.8}}} = 5.43\micro C[/tex]
(c) N = 100
[tex]q_{3} = 6.1\times 10^{-6}e^{- 100\time 7.1\pi \sqrt{\frac{3.2\times 10^{-6}}{11.8}}} = 1.91\micro C[/tex]