contestada

A single-loop circuit consists of a 7.1 Ω resistor, 11.8 H inductor, and a 3.2 μF capacitor. Initially the capacitor has a charge of 6.1 μC and the current is zero. Calculate the charge on the capacitor N complete cycles later for (a) N = 5, (b) N =10, and (c) N = 100.

Respuesta :

Answer:

[tex]q_{1} = 5.756\micro C[/tex]

[tex]q_{2} = 5.43\micro C[/tex]

[tex]q_{3} = 1.91\micro C[/tex]

Given:

Resistance, R = 7.1[tex]\ohm[/tex]

Inductance, L = 11.8 H

Capacitance, C = 3.2[tex]\micro F[/tex]

Initial charge in the capacitor, [tex]q_{i} = 6.1\micro C[/tex]

Solution:

Charge is given by:

q = q'e[tex]^{-t\frac{R}{2L}}cos(\omega t + \theta)[/tex]                          (1)

Now,

t = NT

T = [tex]\frac{2\pi}{\omega}[/tex]

Thus

t = [tex]\frac{2\pi N}{\omega}[/tex]

Substituting the above value of t in eqn (1):

q = q'e[tex]^{- RN\frac{\frac{2\pi}{\omega}}{2L}}cos(\omega \frac{2\pi N}{\omega} + \theta)[/tex]

q = q'e[tex]^{- RN\frac{\frac{2\pi}{\sqrt{\frac{L}{C}}}}{2L}}cos(2\pi N + \theta)[/tex]

q = q'e[tex]^{- \pi RN\sqrt {\frac{C}{L}}} cos \theta[/tex]

where

[tex]q'cos\theta = q_{i}[/tex] = initial charge

q = q_{i}e[tex]^{- \pi RN\sqrt {\frac{C}{L}}}[/tex]

Calculation of complete cycle for:

(a) N = 5

[tex]q_{1} = 6.1\times 10^{-6}e^{- 5\time 7.1\pi \sqrt{\frac{3.2\times 10^{-6}}{11.8}}} = 5.756\micro C[/tex]

(b) N = 10

[tex]q_{2} = 6.1\times 10^{-6}e^{- 10\time 7.1\pi \sqrt{\frac{3.2\times 10^{-6}}{11.8}}} = 5.43\micro C[/tex]

(c) N = 100

[tex]q_{3} = 6.1\times 10^{-6}e^{- 100\time 7.1\pi \sqrt{\frac{3.2\times 10^{-6}}{11.8}}} = 1.91\micro C[/tex]

RELAXING NOICE
Relax