Answer:
fluid density, [tex]\rho = 666.67 kg/m^{3}[/tex]
Given:
Area of cross section of larger pipe, [tex]A_{l} = 50 cm^{2}[/tex]
Area of cross section of smaller pipe, [tex]A_{s} = 25 cm^{2}[/tex]
Velocity of fluid, [tex]v_{i}[/tex] = 3.0 m/s[/tex]
Pressure difference, p = 9000 Pa
Solution:
Using Bernoulli's equation:
[tex]\frac{1}{2}\rho v_{i}^{2} + \rho g h_{a} + P_{i} = \frac{1}{2}\rho v_{o}^{2} + \rho g h_{b} + P_{o}[/tex] (1)
where
[tex]v_{i}[/tex] = inlet velocity
[tex]v_{o}[/tex] = velocity at outlet
[tex]h_{a}[/tex] and [tex]h_{b}[/tex] = vertical heights
[tex]\rho[/tex] = density of the fluid
[tex]P_{i}[/tex] and [tex]P_{o}[/tex] = Pressure
Since, the pipe is horizontal, thus:
[tex]h_{a}[/tex] = [tex]h_{b}[/tex]
Thus eqn (1) reduces to :
[tex]\frac{1}{2}\rho v_{i}^{2} + P_{i} = \frac{1}{2}\rho v_{o}^{2} + P_{o}[/tex]
Now,
[tex]P_{i} - P_{o} = \frac{1}{2}\rho v_{o}^{2} - \frac{1}{2}\rho v_{i}^{2}[/tex]
[tex]9000 = \frac{1}{2}\rho (v_{o}^{2} - v_{i}^{2})[/tex] (2)
Also, from the eqn of continuity:
[tex]A_{l}v_{i} = A_{s}v_{o}[/tex]
[tex]v_{o} = \frac{A_{l}}{A_{s}}v_{i}[/tex]
[tex]v_{o} = \frac{50}{25}\times 3.0 = 6.0 m/s[/tex]
Now, using the value of [tex]v_{o} = 6.0 m/s[/tex] in eqn (2) for fluid density:
[tex]9000 = \frac{1}{2}\rho (6.0^{2} - 3.0^{2})[/tex]
[tex]\rho = 666.67 kg/m^{3}[/tex]