Answer : The correct answer is [tex]5.20\times 10^{-20}J[/tex]
Explanation :
For green light :
[tex]E=\frac{hC}{\lambda}[/tex]
where,
E = energy of green light = ?
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
C = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\lambda[/tex] = wavelength of light = 536 nm = [tex]536\times 10^{-9}m[/tex]
Now put all the given values in the above formula, we get:
[tex]E=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^{8}m/s)}{536\times 10^{-9}m}[/tex]
[tex]E=3.71\times 10^{-19}J[/tex]
For red light :
[tex]E=\frac{hC}{\lambda}[/tex]
where,
E = energy of red light = ?
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
C = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\lambda[/tex] = wavelength of light = 622 nm = [tex]622\times 10^{-9}m[/tex]
Now put all the given values in the above formula, we get:
[tex]E=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^{8}m/s)}{622\times 10^{-9}m}[/tex]
[tex]E=3.19\times 10^{-19}J[/tex]
Now we have to calculate the energy difference.
[tex]\text{Energy difference}=E_{green}-E_{red}[/tex]
[tex]\text{Energy difference}=3.71\times 10^{-19}J-3.19\times 10^{-19}J=5.20\times 10^{-20}J[/tex]
Therefore, the correct answer is [tex]5.20\times 10^{-20}J[/tex]