Presumably you know the Taylor series for [tex]\cos x[/tex] to be
[tex]\cos x=\displaystyle\sum_{n=0}^\infty\frac{(-1)^n}{(2n)!}x^{2n}[/tex]
We have by the double angle identity
[tex]\sin^2\theta=\dfrac{1-\cos(2\theta)}2[/tex]
So
[tex]\sin^2(5x)=\dfrac{1-\cos(10x)}2[/tex]
and substituting [tex]10x[/tex] for [tex]x[/tex] in the Taylor series above gives
[tex]\cos(10x)=\displaystyle\sum_{n=0}^\infty\frac{(-1)^n}{(2n)!}(10x)^{2n}=\sum_{n=0}^\infty\frac{(-100)^n}{(2n)!}x^{2n}[/tex]
[tex]\implies\boxed{\sin^2(5x)=\displaystyle\frac12-\frac12\sum_{n=0}^\infty\frac{(-100)^n}{(2n)!}x^{2n}}[/tex]