If [tex]\vec F[/tex] is conservative, then there is a scalar function [tex]f[/tex] such that [tex]\nabla f=\vec F[/tex]. This means
[tex]f_x=3y^2z^3[/tex]
[tex]f_y=6xyz^3[/tex]
[tex]f_z=9xy^2z^2[/tex]
Integrate both sides of the first PDE wrt [tex]x[/tex]:
[tex]f(x,y,z)=3xy^2z^3+g(y,z)[/tex]
Differentiate wrt [tex]y[/tex]:
[tex]f_y=6xyz^3=6xyz^3+g_y\implies g_y=0\implies g(y,z)=h(z)[/tex]
Differentiate wrt [tex]z[/tex]:
[tex]f_z=9xy^2z^2=9xy^2z^2+g_z=9xy^2z^2+h_z\implies h_z=0\implies h(z)=C[/tex]
Then
[tex]f(x,y,z)=3xy^2z^3+C[/tex]
so [tex]\vec F[/tex] is conservative.