Answer: The change in internal energy of the gas is 29.414 kJ.
Explanation:
To calculate the temperature of the gas at different volumes, we use ideal gas equation:
[tex]PV=nRT[/tex]
We are given:
Conversion used: [tex]1m^3=1000L[/tex]
[tex]P=140kPa\\V=0.23m^3=260L\\n=4.0mol\\R=8.31\text{L kPa }mol^{-1}K^{-1}[/tex]
Putting values in above equation:
[tex]140kPa\times 260L=4mol\times 8.31\text{L kPa }mol^{-1}K^{-1}\times T_i\\\\T_i=1095.06K[/tex]
We are given:
[tex]P=140kPa\\V=0.12m^3=120L\\n=4.0mol\\R=8.31\text{L kPa }mol^{-1}K^{-1}[/tex]
Putting values in above equation:
[tex]140kPa\times 120L=4mol\times 8.31\text{L kPa }mol^{-1}K^{-1}\times T_f\\\\T_f=505.41K[/tex]
[tex]\Delta U=nC_v\Delta T=nC_v(T_f-T_i)[/tex]
where,
[tex]\Delta U[/tex] = change in internal energy = ?
n = number of moles = 4.0 mol
[tex]C_v[/tex] = heat capacity at constant volume = [tex]\frac{3}{2}R[/tex]
[tex]T_f[/tex] = final temperature = 1095.06 K
[tex]T_i[/tex] = initial temperature = 505.41 K
Putting values in above equation, we get:
[tex]\Delta U=4\times \frac{3}{2}\times 8.314J/K.mol\times (505.41-1095.06)\\\\\Delta U=29414.1J[/tex]
Converting this value in kilojoules, we use the conversion factor:
1 kJ = 1000 J
So, [tex]29414.1J=\frac{1kJ}{1000J}\times 29414.1J=29.414kJ[/tex]
Hence, the change in internal energy of the gas is 29.414 kJ.