Answer:
Part a)
[tex]v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}[/tex]
Part b)
[tex]v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})[/tex]
Explanation:
Since the ball and rod is an isolated system and there is no external force on it so by momentum conservation we will have
[tex]Mv_o = M v_1 + m v_2[/tex]
here we also use angular momentum conservation
so we have
[tex]M v_o d = M v_1 d + \beta mL^2 \omega[/tex]
also we know that the collision is elastic collision so we have
[tex]v_o = (v_2 + d\omega) - v_1[/tex]
so we have
[tex]\omega = \frac{v_o + v_1 - v_2}{d}[/tex]
also we know
[tex]M v_o d - M v_1 d = \beta mL^2(\frac{v_o + v_1 - v_2}{d})[/tex]
also we know
[tex]v_1 = v_o - \frac{m}{M}v_2[/tex]
so we have
[tex]M v_o d - M(v_o - \frac{m}{M}v_2)d = \beta mL^2(\frac{v_o + v_o - \frac{m}{M}v_2 - v_2}{d})[/tex]
[tex]mv_2 d = \beta mL^2\frac{2v_o}{d} - \beta mL^2(1 + \frac{m}{M})\frac{v_2}{d}[/tex]
now we have
[tex](md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})v_2 = \frac{2\beta mL^2v_o}{d}[/tex]
[tex]v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}[/tex]
Part b)
Now we know that speed of the ball after collision is given as
[tex]v_1 = v_o - \frac{m}{M}v_2[/tex]
so it is given as
[tex]v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})[/tex]