Respuesta :
Answer:
[tex]\frac{Ie}{lm} = 1.10*10^{-3}[/tex]
Explanation:
GIVEN DATA:
Engine operating speed nf = 8325 rev/min
engine angular speed ni= 12125 rev/min
motorcycle angular speed N_m= - 4.2 rev/min
ratio of moment of inertia of engine to motorcycle is given as
[tex]\frac{Ie}{lm} = \frac{-N}{(nf-ni)}[/tex]
[tex]\frac{Ie}{lm} = \frac{-(-4.2)}{(12125 - (8325))}[/tex]
[tex]\frac{Ie}{lm} = 1.10*10^{-3}[/tex]
Answer:[tex]1.105\times 10^{-3}[/tex]
Explanation:
Given
Initial angular speed of engine([tex]\omega _E[/tex])=8325 rpm
Final angular speed of engine([tex]\omega _E_f[/tex])=12125 rpm
Initial angular speed of Motorcycle([tex]\omega _M[/tex])=0 rpm
Final angular speed of engine([tex]\omega _M_f[/tex])=4.2 rpm
as there is no external torque therefore angular momentum remains conserved
[tex]I_E\omega _E+I_M\omega _M=I_E\omega _E_f+I_M\omega _M_f[/tex]
[tex]I_E\omega _E+=I_E\omega _E_f+I_M\omega _M_f[/tex]
[tex]I_E\left ( \omega _E-\omega _E_f\right )=I_M\omega _M_f[/tex]
[tex]\frac{I_E}{I_M}=\frac{\omega _M_f}{\omega _E-\omega _E_f}[/tex]
[tex]\frac{I_E}{I_M}=\frac{-4.2}{8325-12125}=0.0011052\approx 1.105\times 10^{-3}[/tex]